Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 6, pp 1645–1672 | Cite as

Topology optimization of cracked structures using peridynamics

  • Adnan Kefal
  • Abdolrasoul Sohouli
  • Erkan Oterkus
  • Mehmet YildizEmail author
  • Afzal Suleman
Original Article
  • 109 Downloads

Abstract

Finite element method (FEM) is commonly used with topology optimization algorithms to determine optimum topology of load-bearing structures. However, it may possess various difficulties and limitations for handling the problems with moving boundaries, large deformations, and cracks/damages. To remove limitations of the mesh-based topology optimization, this study presents a robust and accurate approach based on the innovative coupling of peridynamics (PD) (a meshless method) and topology optimization (TO), abbreviated as PD–TO. The minimization of compliance, i.e. strain energy, is chosen as the objective function subjected to the volume constraint. The design variable is the relative density defined at each particle employing bidirectional evolutionary optimization approach. A filtering scheme is also adopted to avoid the checkerboard issue and maintain the optimization stability. To present the capability, efficiency, and accuracy of the PD–TO approach, various challenging optimization problems with and without defects (cracks) are solved under different boundary conditions. The results are extensively compared and validated with those obtained by element-free Galerkin method and FEM. The main advantage of the PD–TO methodology is its ability to handle TO problems of cracked structures without requiring complex treatments for mesh connectivity. Hence, it can be an alternative and powerful tool in finding optimal topologies that can circumvent crack propagation and growth in two- and three-dimensional structures.

Keywords

Peridynamics Topology optimization Bi-evolutionary structural optimization Cracked structures 

Notes

Acknowledgements

A. Sohouli and A. Suleman acknowledge the Graduate Fellowship from the NSERC Canada Research Chair and Discovery Grant Programs.

References

  1. 1.
    Yamada, T., Izui, K., Nishiwaki, S., Takezawa, A.: A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199(45–48), 2876–2891 (2010).  https://doi.org/10.1016/j.cma.2010.05.013 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Choi, K.K., Kim, N.-H.: Structural Sensitivity Analysis and Optimization 1: Linear Systems. Springer, Berlin (2006)Google Scholar
  3. 3.
    Sigmund, O.: Design of multiphysics actuators using topology optimization—part I: one-material structures. Comput. Methods Appl. Mech. Eng. 190(49–50), 6577–6604 (2001).  https://doi.org/10.1016/s0045-7825(01)00251-1 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Yoon, G.H., Jensen, J.S., Sigmund, O.: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int. J. Numer. Methods Eng. 70(9), 1049–1075 (2007).  https://doi.org/10.1002/nme.1900 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gersborg-Hansen, A., Sigmund, O., Haber, R.B.: Topology optimization of channel flow problems. Struct. Multidiscip. Optim. 30(3), 181–192 (2005).  https://doi.org/10.1007/s00158-004-0508-7 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kontoleontos, E.A., Papoutsis-Kiachagias, E.M., Zymaris, A.S., Papadimitriou, D.I., Giannakoglou, K.C.: Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng. Optim. 45(8), 941–961 (2013).  https://doi.org/10.1080/0305215x.2012.717074 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Briot, S., Goldsztejn, A.: Topology optimization of industrial robots: application to a five-bar mechanism. Mech. Mach. Theory 120, 30–56 (2018).  https://doi.org/10.1016/j.mechmachtheory.2017.09.011 CrossRefGoogle Scholar
  8. 8.
    Yang, R.J., Chahande, A.I.: Automotive applications of topology optimization. Struct. Optim. 9(3–4), 245–249 (1995).  https://doi.org/10.1007/bf01743977 CrossRefGoogle Scholar
  9. 9.
    Forsberg, J., Nilsson, L.: Topology optimization in crashworthiness design. Struct. Multidiscip. Optim. 33(1), 1–12 (2007).  https://doi.org/10.1007/s00158-006-0040-z CrossRefGoogle Scholar
  10. 10.
    Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E., Moruzzi, P.: High performance automotive chassis design: a topology optimization based approach. Struct. Multidiscip. Optim. 44(1), 45–56 (2011).  https://doi.org/10.1007/s00158-010-0578-7 CrossRefGoogle Scholar
  11. 11.
    Inoyama, D., Sanders, B.P., Joo, J.J.: Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J. Aircr. 45(6), 1853–1862 (2008).  https://doi.org/10.2514/1.29988 CrossRefGoogle Scholar
  12. 12.
    Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23(4), 595–622 (2016).  https://doi.org/10.1007/s11831-015-9151-2 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Maute, K., Allen, M.: Conceptual design of aeroelastic structures by topology optimization. Struct. Multidiscip. Optim. 27(1–2), 27–42 (2004).  https://doi.org/10.1007/s00158-003-0362-z CrossRefGoogle Scholar
  14. 14.
    Zhang, R., Zhang, X., Lorenzini, G., Xie, G.: Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts. Contin. Mech. Thermodyn. 28(6), 1905–1924 (2016).  https://doi.org/10.1007/s00161-016-0518-x ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sigmund, O., Maute, K.: Topology optimization approaches a comparative review. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013).  https://doi.org/10.1007/s00158-013-0978-6 MathSciNetCrossRefGoogle Scholar
  16. 16.
    dell’Isola, F., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin. Mech. Thermodyn. 31(4), 1231–1282 (2019).  https://doi.org/10.1007/s00161-019-00806-x ADSCrossRefGoogle Scholar
  17. 17.
    Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988).  https://doi.org/10.1016/0045-7825(88)90086-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bendsoe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9–10), 635–654 (1999).  https://doi.org/10.1007/s004190050248 ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Philip, B.M., Ole, S.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)Google Scholar
  20. 20.
    Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    van Dijk, N.P., Maute, K., Langelaar, M., van Keulen, F.: Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013).  https://doi.org/10.1007/s00158-013-0912-y MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993).  https://doi.org/10.1016/0045-7949(93)90035-c CrossRefGoogle Scholar
  23. 23.
    Huang, X.D., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 41(5), 671–683 (2010).  https://doi.org/10.1007/s00158-010-0487-9 CrossRefGoogle Scholar
  24. 24.
    Querin, O.M., Young, V., Steven, G.P., Xie, Y.M.: Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Eng. 189(2), 559–573 (2000).  https://doi.org/10.1016/s0045-7825(99)00309-6 ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Huang, X., Xie, Y.M., Burry, M.C.: Advantages of bi-directional evolutionary structural optimization (BESO) over evolutionary structural optimization (ESO). Adv. Struct. Eng. 10(6), 727–737 (2007).  https://doi.org/10.1260/136943307783571436 CrossRefGoogle Scholar
  26. 26.
    Huang, X., Xie, M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, New York (2010)CrossRefGoogle Scholar
  27. 27.
    Sjolund, J.H., Peeters, D., Lund, E.: A new thickness parameterization for discrete material and thickness optimization. Struct. Multidiscip. Optim. 58(5), 1885–1897 (2018).  https://doi.org/10.1007/s00158-018-2093-1 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ghasemi, H., Park, H.S., Rabczuk, T.: A multi-material level set-based topology optimization of flexoelectric composites. Comput. Methods Appl. Mech. Eng. 332, 47–62 (2018).  https://doi.org/10.1016/j.cma.2017.12.005 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Ranaivomiarana, N., Irisarri, F.X., Bettebghor, D., Desmorat, B.: Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures. Contin. Mech. Thermodyn. 31(1), 133–146 (2019).  https://doi.org/10.1007/s00161-018-0661-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jantos, D.R., Riedel, C., Hackl, K., Junker, P.: Comparison of thermodynamic topology optimization with SIMP. Contin. Mech. Thermodyn. 31(2), 521–548 (2019).  https://doi.org/10.1007/s00161-018-0706-y ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Tanskanen, P.: The evolutionary structural optimization method: theoretical aspects. Comput. Methods Appl. Mech. Eng. 191(47–48), 5485–5498 (2002).  https://doi.org/10.1016/s0045-7825(02)00464-4 ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 15(8), 1031 (1998).  https://doi.org/10.1108/02644409810244129 CrossRefzbMATHGoogle Scholar
  33. 33.
    Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimization. Aiaa J. 37(11), 1483–1488 (1999).  https://doi.org/10.2514/2.626 ADSCrossRefGoogle Scholar
  34. 34.
    Ghasemi, H., Park, H.S., Rabczuk, T.: A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput. Methods Appl. Mech. Eng. 313, 239–258 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998).  https://doi.org/10.1007/bf01214002 CrossRefGoogle Scholar
  36. 36.
    Yang, X.J., Zheng, J., Long, S.Y.: Topology optimization of continuum structures with displacement constraints based on meshless method. Int. J. Mech. Mater. Des. 13(2), 311–320 (2017).  https://doi.org/10.1007/s10999-016-9337-2 CrossRefGoogle Scholar
  37. 37.
    Shobeiri, V.: Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method. Eng. Optim. 48(3), 380–396 (2016).  https://doi.org/10.1080/0305215x.2015.1012076 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Shobeiri, V.: The topology optimization design for cracked structures. Eng. Anal. Bound. Elem. 58, 26–38 (2015).  https://doi.org/10.1016/j.enganabound.2015.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    He, Q.Z., Kang, Z., Wang, Y.Q.: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput. Mech. 54(3), 629–644 (2014).  https://doi.org/10.1007/s00466-014-1011-7 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zheng, J., Long, S.Y., Xiong, Y.B., Li, G.Y.: A topology optimization design for the continuum structure based on the meshless numerical technique. CMES Comput. Model. Eng. Sci. 34(2), 137–154 (2008)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Li, S., Aturi, S.N.: Topology-optimization of structures based on the MLPG mixed collocation method. CMES Comput. Model. Eng. Sci. 26(1), 61–74 (2008)Google Scholar
  42. 42.
    Lin, J., Guan, Y., Zhao, G., Naceur, H., Lu, P.: Topology optimization of plane structures using smoothed particle hydrodynamics method. Int. J. Numer. Methods Eng. 110(8), 726–744 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000).  https://doi.org/10.1016/s0022-5096(99)00029-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007).  https://doi.org/10.1007/s10659-007-9125-1 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015).  https://doi.org/10.1177/1081286513509811 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. General. Contin. Models Class. Adv. Mater. 42, 77–128 (2016).  https://doi.org/10.1007/978-3-319-31721-2_5 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ebrahimi, S., Steigmann, D.J., Komvopoulos, K.: Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. J. Mech. Mater. Struct. 10(5), 559–572 (2015).  https://doi.org/10.2140/jomms.2015.10.559 CrossRefGoogle Scholar
  48. 48.
    Taylor, M., Steigmann, D.J.: A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20(8), 998–1010 (2015).  https://doi.org/10.1177/1081286513512925 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 92(6), 426–444 (2012).  https://doi.org/10.1002/zamm.201100082 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016).  https://doi.org/10.1007/s10237-016-0765-6 CrossRefGoogle Scholar
  51. 51.
    Giorgio, I., Andreaus, U., Dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017).  https://doi.org/10.1016/j.eml.2017.02.008 CrossRefGoogle Scholar
  52. 52.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005).  https://doi.org/10.1016/j.compstruc.2004.11.026 CrossRefGoogle Scholar
  53. 53.
    Bobaru, F., Silling, S.A., Jiang, H.: Peridynamic fracture and damage modeling of membranes and nanofiber networks. In: XI International Conference Fracture, Turin, Italy (2005)Google Scholar
  54. 54.
    Shen, F., Zhang, Q., Huang, D.: Damage and failure process of concrete structure under uniaxial compression based on peridynamics modeling. Math. Prob. Eng. (2013).  https://doi.org/10.1155/2013/631074 CrossRefGoogle Scholar
  55. 55.
    Cheng, Z.Q., Zhang, G.F., Wang, Y.N., Bobaru, F.: A peridynamic model for dynamic fracture in functionally graded materials. Compos. Struct. 133, 529–546 (2015).  https://doi.org/10.1016/j.compstruct.2015.07.047 CrossRefGoogle Scholar
  56. 56.
    Zhang, G.F., Le, Q., Loghin, A., Subramaniyan, A., Bobaru, F.: Validation of a peridynamic model for fatigue cracking. Eng. Fract. Mech. 162, 76–94 (2016).  https://doi.org/10.1016/j.engfracmech.2016.05.008 CrossRefGoogle Scholar
  57. 57.
    Oterkus, S., Madenci, E.: Peridynamics for antiplane shear and torsional deformations. J. Mech. Mater. Struct. 10(2), 167–193 (2015).  https://doi.org/10.2140/jomms.2015.10.167 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Kilic, B., Madenci, E.: Structural stability and failure analysis using peridynamic theory (in English). Int. J. Non-Linear Mech. 44(8), 845–854 (2009).  https://doi.org/10.1016/j.ijnonlinmec.2009.05.007 ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics (in English). Int. J. Hydrog. Energy 41(15), 6593–6609 (2016).  https://doi.org/10.1016/j.ijhydene.2016.02.154 CrossRefGoogle Scholar
  60. 60.
    Nadimi, S., Miscovic, I., McLennan, J.: A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium (in English). J. Pet. Sci. Eng. 145, 444–452 (2016).  https://doi.org/10.1016/j.petrol.2016.05.032 CrossRefGoogle Scholar
  61. 61.
    Kilic, B., Agwai, A., Madenci, E.: Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90(2), 141–151 (2009).  https://doi.org/10.1016/j.compstruct.2009.02.015 CrossRefGoogle Scholar
  62. 62.
    Hu, Y.L., De Carvalho, N.V., Madenci, E.: Peridynamic modeling of delamination growth in composite laminates. Compos. Struct. 132, 610–620 (2015).  https://doi.org/10.1016/j.compstruct.2015.05.079 CrossRefGoogle Scholar
  63. 63.
    Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. Math. Phys. Eng. Sci. 474(2210), 20170878 (2018).  https://doi.org/10.1098/rspa.2017.0878 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Comp. Syst. 6(2), 77–100 (2018).  https://doi.org/10.2140/memocs.2018.6.77 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift Fur Angewandte Mathematik Und Physik 69(3), 56 (2018).  https://doi.org/10.1007/s00033-018-0947-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech. Thermodyn. 31, 1143 (2019).  https://doi.org/10.1007/s00161-018-0693-z ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Basoglu, M.F., Zerin, Z., Kefal, A., Oterkus, E.: A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Comput. Mater. Sci. 162, 33–46 (2019).  https://doi.org/10.1016/j.commatsci.2019.02.032 CrossRefGoogle Scholar
  68. 68.
    Della Corte, A., Battista, A., Dell’Isola, F., Giorgio, I.: Modeling deformable bodies using discrete systems with centroid-based propagating interaction: fracture and crack evolution. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics, pp. 59–88. Springer, Singapore (2017)CrossRefGoogle Scholar
  69. 69.
    Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016).  https://doi.org/10.1016/j.ijnonlinmec.2015.06.016 ADSCrossRefGoogle Scholar
  70. 70.
    Wiech, J., Eremeyev, V.A., Giorgio, I.: Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following. Continuum Mech. Thermodyn. 30, 1091 (2018).  https://doi.org/10.1007/s00161-018-0664-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: deformation and fracture phenomena. Math. Mech. Solids 22(11), 2120–2134 (2017).  https://doi.org/10.1177/1081286516657889 MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    dell’Erba, R.: Swarm robotics and complex behaviour of continuum material. Continuum Mech. Thermodyn. 31, 989 (2019).  https://doi.org/10.1007/s00161-018-0675-1 ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift Fur Angewandte Mathematik Und Physik 67(4), 85 (2016).  https://doi.org/10.1007/s00033-016-0681-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Muller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016).  https://doi.org/10.1016/j.mechrescom.2016.07.007 CrossRefGoogle Scholar
  75. 75.
    Alibert, J.J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003).  https://doi.org/10.1177/108128603029658 MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Ren, H.L., Zhuang, X.Y., Cai, Y.C., Rabczuk, T.: Dual-horizon peridynamics. Int. J. Numer. Methods Eng. 108(12), 1451–1476 (2016).  https://doi.org/10.1002/nme.5257 MathSciNetCrossRefGoogle Scholar
  77. 77.
    Ren, H.L., Zhuang, X.Y., Rabczuk, T.: Dual-horizon peridynamics: a stable solution to varying horizons. Comput. Methods Appl. Mech. Eng. 318, 762–782 (2017).  https://doi.org/10.1016/j.cma.2016.12.031 ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, Berlin (2014)CrossRefGoogle Scholar
  79. 79.
    Mikata, Y.: Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int. J. Solids Struct. 49(21), 2887–2897 (2012).  https://doi.org/10.1016/j.ijsolstr.2012.02.012 CrossRefGoogle Scholar
  80. 80.
    Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (Eds.) Computational Methods for Transient Dynamic Analysis, pp. 246–265. North Holland, Amsterdam (1983)Google Scholar
  81. 81.
    Bobaru, F., Yang, M.J., Alves, L.F., Silling, S.A., Askari, E., Xu, J.F.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009).  https://doi.org/10.1002/nme.2439 CrossRefzbMATHGoogle Scholar
  82. 82.
    Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99(1), 85–111 (2010).  https://doi.org/10.1007/s10659-009-9234-0 MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Huang, X., Xie, Y.M., Burry, M.C.: A new algorithm for bi-directional evolutionary structural optimization. In: SME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 49, pp. 1091–1099 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43(14), 1039–1049 (2007).  https://doi.org/10.1016/j.finel.2007.06.006 CrossRefGoogle Scholar
  85. 85.
    Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012).  https://doi.org/10.1007/s00158-011-0706-z MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Adnan Kefal
    • 1
  • Abdolrasoul Sohouli
    • 2
  • Erkan Oterkus
    • 3
  • Mehmet Yildiz
    • 4
    • 5
    • 6
    Email author
  • Afzal Suleman
    • 2
  1. 1.Faculty of Naval Architecture and Ocean EngineeringIstanbul Technical UniversityMaslak-Sariyer, IstanbulTurkey
  2. 2.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Department of Naval Architecture, Ocean and Marine EngineeringUniversity of StrathclydeGlasgowUK
  4. 4.Integrated Manufacturing Technologies Research and Application CenterSabanci UniversityTuzlaTurkey
  5. 5.Composite Technologies Center of Excellence, Istanbul Technology Development ZoneSabanci University-Kordsa GlobalPendik, IstanbulTurkey
  6. 6.Faculty of Engineering and Natural SciencesSabanci UniversityTuzla, IstanbulTurkey

Personalised recommendations