Advertisement

Experimental study and phenomenological modelling of flaw sensitivity of two polymers used as dielectric elastomers

  • Dilshad Ahmad
  • Karali PatraEmail author
  • Mokarram Hossain
Original Article

Abstract

The extreme stretching of dielectric elastomers in sensors, actuators and energy harvesting devices is a common phenomenon where the materials are prone to fracture under the influence of flaws and notches. In this work, we have investigated the length of flaw sensitivities of two widely used dielectric materials, acrylic (VHB) and silicone (Ecoflex) elastomers under a pure shear loading and established that the length of flaw sensitivity of acrylic is almost double than that of silicone. Therefore, the acrylic elastomer is safer to operate for small notches as compared to the silicone material. However, within the flaw-sensitive length, failure stretch, fracture toughness and failure stress are more for Ecoflex than those for VHB. It is found that the failure stretch and the fracture toughness decrease drastically after the length of flaw sensitivities for both materials. Also, the failure stress keeps on decreasing with an increase in notch length for both materials. Afterwards, a simple phenomenological relation is proposed for fitting experimental results under a pure shear loading with only two parameters. The mathematical relation is valid for both the materials and covers the notch sensitivity with a good agreement.

Keywords

Dielectric elastomer Stretchability Length of flaw sensitivity Pure shear Fracture toughness 

Notes

Acknowledgements

The work was partially supported by DST, Government of India under a research Project No. INT/SIN/P-03.

References

  1. 1.
    An, L., Wang, F., Cheng, S., Lu, T., Wang, T.J.: Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24, 035006 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, C., Chen, H., Liu, L., Li, D.: Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration. J. Phys. D. Appl. Phys. 48, 245502 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Mathew, A.T., Koh, S.J.A.: Operational limits of a non-homogeneous dielectric elastomer transducer. Int. J. Smart Nano Mater. 8, 214–231 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Sahu, R.K., Saini, A., Ahmad, D., Patra, K., Szpunar, J.: Estimation and validation of Maxwell stress of planar dielectric elastomer actuators. J. Mech. Sci. Technol. 30, 429–436 (2016)CrossRefGoogle Scholar
  5. 5.
    Saini, A., Ahmad, D., Patra, K.: Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications. In: Processing of the SPIE, vol. 9798, p. 979813 (2016)Google Scholar
  6. 6.
    Kumar, A., Ahmad, D., Patra, K.: Dependence of actuation strain of dielectric elastomer on equi-biaxial, pure shear and uniaxial modes of pre-stretching. In: IOP Conference Series: Materials Science and Engineering, vol. 310, p. 012104 (2018)Google Scholar
  7. 7.
    McKay, T.G., O’Brien, B.M., Calius, E.P., Anderson, I.A.: Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 1–4 (2011)CrossRefGoogle Scholar
  8. 8.
    Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 1–4 (2010)Google Scholar
  9. 9.
    Koo, I.M., Jung, K., Koo, J.C., Nam, J., Lee, Y.K.: Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24, 549–558 (2008)CrossRefGoogle Scholar
  10. 10.
    Slesarenko, V., Engelkemier, S., Galich, P., Vladimirsky, D., Klein, G., Rudykh, S.: Strategies to control performance of 3D-printed, cable-driven soft polymer actuators: from simple architectures to gripper prototype. Polymers 10(8), 846 (2018)CrossRefGoogle Scholar
  11. 11.
    Mehnert, M., Hossain, M., Steinmann, P.: Experimental and numerical investigations of the electro-viscoelastic behavior of VHB 4905. Eur. J. Mech. A Solids 77, 103797 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    Cohen, N., Oren, S.S., deBotton, G.: The evolution of the dielectric constant in various polymers subjected to uniaxial stretch. Extrem. Mech. Lett. 16, 1–5 (2017)CrossRefGoogle Scholar
  13. 13.
    Schmidt, A., Rothemund, P., Mazza, E.: Multiaxial deformation and failure of acrylic elastomer membranes. Sens. Actuators A Phys. 174, 133–138 (2012)CrossRefGoogle Scholar
  14. 14.
    Huang, J., Shian, S., Suo, Z., Clarke, D.R.: Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv. Funct. Mater. 23, 5056–5061 (2013)CrossRefGoogle Scholar
  15. 15.
    Hamdi, A., Nait, A.M., Ait, H.N., Heuillet, P., Benseddiq, N.: A fracture criterion of rubber-like materials under plane stress conditions. Polym. Test. 25, 994–1005 (2006)CrossRefGoogle Scholar
  16. 16.
    Pharr, M., Sun, J.Y., Suo, Z.: Rupture of a highly stretchable acrylic dielectric elastomer. J. Appl. Phys. 111, 104114 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Kaltseis, R.: Natural rubber for sustainable high-power electrical energy generation. RSC Adv. 4, 27905–27913 (2014)CrossRefGoogle Scholar
  18. 18.
    Koh, S.J.A.: High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: actuation processes. J. Mech. Phys. Solids 105, 81–94 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Hodgins, M., Seelecke, S.: Systematic experimental study of pure shear type dielectric elastomer membranes with different electrode and film thicknesses. Smart Mater. Struct. 25, 095001 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch. Appl. Mech. 85, 523–537 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Hossain, M., Vu, D.K., Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mater. Sci. 59, 65–74 (2012)CrossRefGoogle Scholar
  22. 22.
    Mehnert, M., Steinmann, P.: On the influence of the compliant electrodes on the mechanical behavior of VHB 4905. Comput. Mater. Sci. 160, 287–294 (2019)CrossRefGoogle Scholar
  23. 23.
    Liao, Z., Yao, X.H., Zhang, L.H., Hossain, M., Wang, J., Zang, S.G.: Temperature and strain rate dependent large tensile deformation and tensile failure behaviour of transparent polyurethane at intermediate strain rates. Int. J. Impact Eng. 129, 152–167 (2019)CrossRefGoogle Scholar
  24. 24.
    Liao, Z., Hossain, M., Yao, X.H., Mehnert, M., Steinmann, P.: On thermo-viscoelastic experimental characterisations and numerical modelling of VHB polymer. Int. J. Non-Linear Mech. (2019) (in review)Google Scholar
  25. 25.
    Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A Phys. 138, 384–393 (2007)CrossRefGoogle Scholar
  26. 26.
    Schmidt, A., Bergamini, A., Kovacs, G., Mazza, E.: Multiaxial mechanical characterization of interpenetrating polymer network reinforced acrylic elastomer. Exp. Mech. 51, 1421–1433 (2011)CrossRefGoogle Scholar
  27. 27.
    Goh, Y.F., Akbari, S., Khanh Vo, T.V., Koh, S.J.A.: Electrically-induced actuation of acrylic-based dielectric elastomers in excess of 500% strain. Soft Robot. (2018).  https://doi.org/10.1089/soro.2017.0078 Google Scholar
  28. 28.
    Smith, T.L.: Ultimate tensile properties of elastomers. II. Comparison of failure envelopes for unfilled vulcanizates. J. Appl. Phys. 35, 27–36 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    Fan, W., Wang, Y., Cai, S.: Fatigue fracture of a highly stretchable acrylic elastomer. Polym. Test. 61, 373–377 (2017)CrossRefGoogle Scholar
  30. 30.
    Ahmad, D., Patra, K.: Fracture behavior of dielectric elastomer under pure shear loading. In: IOP Conference Series: Materials Science and Engineering, vol. 229 (2017)Google Scholar
  31. 31.
    Wang, H., Wang, K., Fan, W., Cai, S.: Rupture of swollen styrene butadiene rubber. Polym. Test. 61, 100–105 (2017)CrossRefGoogle Scholar
  32. 32.
    Setua, D.K., De, S.K.: Effect of short fibres on critical cut length in tensile failure of rubber vulcanizates. J. Mater. Sci. 20, 2653–2660 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    Akhtar, S., Bhowmick, A.K., De, P.P., De, S.K.: Tensile rupture of short fibre filled thermoplastic elastomer. J. Mater. Sci. 5, 4179–4184 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    Hamed, G.: Effect of crosslink density on the critical flaw size of a simple elastomer. Rubber Chem. Technol. 56, 244–291 (1983)CrossRefGoogle Scholar
  35. 35.
    Chen, C., Wang, Z., Suo, Z.: Flaw sensitivity of highly stretchable materials. Extrem. Mech. Lett. 10, 50–57 (2017)CrossRefGoogle Scholar
  36. 36.
    Rosset, S., Maffli, L., Houis, S., Shea, H.R.: An instrument to obtain the correct biaxial hyperelastic parameters of silicones for accurate DEA modelling. In: SPIE Smart Structures and Materials, Nondestructive Evaluation and Health Monitoring, vol. 9056, p. 90560M (2014)Google Scholar
  37. 37.
    Li, B., Zhang, J., Liu, L., Chen, H., Jia, S., Li, D.: Modeling of dielectric elastomer as electromechanical resonator. J. Appl. Phys. 116, 124509 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Moreira, D.C., Nunes, L.C.S.: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym. Test. 32, 240–248 (2013)CrossRefGoogle Scholar
  39. 39.
    Ahmad, D., Patra, K.: Experimental and theoretical analysis of laterally pre-stretched pure shear deformation of dielectric elastomer. Polym. Test. 75, 291–297 (2019)CrossRefGoogle Scholar
  40. 40.
    Sakulkaew, K.: Tearing of Rubber, Ph.D. Thesis. Queen Mary University, London (2012)Google Scholar
  41. 41.
    Marano, C., Boggio, M., Cazzoni, E., Rink, M.: Fracture phenomenology and toughness of filled natural rubber compounds via the pure shear test specimen. Rubber Chem. Technol 87, 501–515 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology PatnaPatnaIndia
  2. 2.Zienkiewicz Centre for Computational Engineering, College of Engineering, Bay CampusSwansea UniversitySwanseaUK

Personalised recommendations