Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 6, pp 1873–1881 | Cite as

Relation between defects and crystalline thermal conduction

  • A. A. Le-Zakharov
  • A. M. Krivtsov
  • A. V. PorubovEmail author
Original Article
  • 57 Downloads

Abstract

Modeling of the heat transfer in ideal crystal lattice with defects is performed for measuring the heat conductivity coefficient. A non-steady process in closed system is studied. The method is based on comparison of the results of molecular dynamics simulation and solution of the heat equation. Two-dimensional and three-dimensional structures with dense packing of particles are considered. Defects are modeled by removing or changing the mass of randomly selected lattice atoms. Based on the results of molecular-dynamics modeling, an empirical dependence of the thermal diffusivity on the density of defects is elaborated. It also turns out in a good agreement with experimental data.

Keywords

Heat transfer Thermal conduction Crystal lattice Defects 

Notes

Acknowledgements

The work was performed in IPME RAS, supported by the Russian Science Foundation (Grant 19-41-04106). The authors thank a lot the referees for the valuable comments.

References

  1. 1.
    Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921. Springer, Switzerland (2016)Google Scholar
  2. 2.
    Hoover, W.G., Hoover, C.G.: Simulation and Control of Chaotic Nonequilibrium Systems. Advanced Series in Nonlinear Dynamics, vol. 27. World Scientific, Singapore (2015)CrossRefGoogle Scholar
  3. 3.
    Callaway, J.: Model for lattice thermal conductivity at low temperature. Phys. Rev. 113(4), 1046–1051 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    Ma, J., Luo, X.: Examining the Gallaway model for lattice thermal conductivity. Phys. Rev. B 90, 035203 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Klemens, P.G.: The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. A 68, 1113–1128 (1955)ADSCrossRefGoogle Scholar
  6. 6.
    Polanco, C.A., Lindsay, L.: Thermal conductivity of \(InN\) with point defects from first principles. Phys. Rev. B 98, 014306 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 10731078 (1967)CrossRefGoogle Scholar
  8. 8.
    Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., et al. (eds.) Mathematical Physics 2000, pp. 128–150. Imperial College Press, London (2000)CrossRefGoogle Scholar
  9. 9.
    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dhar, A., Dandekar, R.: Heat transport and current fluctuations in harmonic crystals. Phys. A 418, 49–64 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Le-Zakharov, A.A., Krivtsov, A.M.: Molecular dynamics investigation of heat conduction in crystals with defects. Dokl. Phys. 53(5), 261–264 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Gendelman, O.V., Savin, A.V.: Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 106, 34004 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Guzev, M.A.: The Fourier law for a one-dimensional crystal. Far East. Math. J. 1, 34–39 (2018)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krivtsov, A.M.: The ballistic heat equation for a one-dimensional harmonic crystal. In: Altenbach, H., et al. (eds.) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol. 103, pp. 345–358. Springer, Switzerland (2019)Google Scholar
  15. 15.
    Krivtsov, A.M.: On unsteady heat conduction in a harmonic crystal. arXiv:1509.02506 (2015)
  16. 16.
    Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Contin. Mech. Thermodyn. 31, 255–272 (2019)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kuzkin, V.A.: Fast and slow thermal processes in harmonic crystals with polyatomic lattice, arXiv [Preprint] (2018). arXiv:1808.00504
  18. 18.
    Babenkov, M.B., Ivanova, E.A.: Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Contin. Mech. Thermodyn. 26, 483–502 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Adamyan, V., Zavalniuk, V.: Lattice thermal conductivity of graphene with conventionally isotopic defects. J. Phys. Condens. Matter 24(41), 415401 (2012)CrossRefGoogle Scholar
  20. 20.
    Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, D., Yang, P., Yuan, X., Guo, J., Liao, N.: The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics. Phys. Lett. A 379(9), 810–814 (2015)CrossRefGoogle Scholar
  22. 22.
    Li, M., et al.: Effect of defects on the mechanical and thermal properties of graphene. Nanomaterials 9, 347 (2019)CrossRefGoogle Scholar
  23. 23.
    Yang, Y., et al.: Thermal conductivity of defective graphene oxide: a molecular dynamic study. Molecules 24, 1103 (2019)CrossRefGoogle Scholar
  24. 24.
    Kang, Y., et al.: Thermal transport of graphene sheets with fractal defects. Molecules 23, 3294 (2018)CrossRefGoogle Scholar
  25. 25.
    Ding, Z., Pei, Q.-X., Jiang, J.-W., Zhang, Y.-W.: Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 119(28), 16358–16365 (2015)CrossRefGoogle Scholar
  26. 26.
    Park, J., et al.: Sensitivity of thermal transport in thorium dioxide to defects. J. Nucl. Mater. 504, 198–205 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Resnick, A., et al.: Thermal transport study in actinide oxides with point defects. Nucl. Eng. Technol. (2019).  https://doi.org/10.1016/j.net.2019.03.011 CrossRefGoogle Scholar
  28. 28.
    Banholzer, W.F., Anthony, T.R.: Diamond properties as a function of isotopic composition. Thin Solid Films 212(1–2), 1–10 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Anthony, T.R., Banholzer, W.F.: Properties of diamond with varying isotopic composition. Diam. Relat. Mater. 1, 71–726 (1992)CrossRefGoogle Scholar
  30. 30.
    Wei, Lanhua, et al.: Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    Qiu, Y.Z., et al.: Thermal conductivity of natural and synthetic diamonds with differing isotope contents. Thermochim. Acta 218, 257–268 (1993)CrossRefGoogle Scholar
  32. 32.
    Hoover, W.G., Hoover, C.G.: Hamiltonian thermostats fail to promote heat flow. Commun. Nonlinear Sci. Numer. Simul. 18, 3365–3372 (2013)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Krivtsov, A.M., Myasnikov, V.P.: Modelling using particles of the transformation of the inner structure and stress state in material subjected to strong thermal action. Mech. Solids 1, 72–85 (2005)Google Scholar
  34. 34.
    Krivtsov, A.M.: Molecular dynamics simulation of plastic effects upon spalling. Phys. Solid State 46(6), 1055–1060 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Xu, X., et al.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Goldstein, R.V., Morozov, N.F.: Mechanics of deformation and fracture of nanomaterials and nanotechnology. Phys. Mesomech. 10, 235–246 (2007)CrossRefGoogle Scholar
  39. 39.
    Shtukin, L.V., Berinskii, I.E., Indeitsev, D.A., Morozov, N.F., Skubov, D.Y.: Electromechanical models of nanoresonators. Phys. Mesomech. 19(3), 248254 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Le-Zakharov
    • 1
    • 2
  • A. M. Krivtsov
    • 1
    • 2
  • A. V. Porubov
    • 1
    • 2
    Email author
  1. 1.Institute for Problems in Mechanical EngineeringSaint PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic University (SPbPU)Saint PetersburgRussia

Personalised recommendations