Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 4, pp 1231–1282 | Cite as

Advances in pantographic structures: design, manufacturing, models, experiments and image analyses

  • Francesco dell’Isola
  • Pierre Seppecher
  • Mario SpagnuoloEmail author
  • Emilio Barchiesi
  • François Hild
  • Tomasz Lekszycki
  • Ivan Giorgio
  • Luca Placidi
  • Ugo Andreaus
  • Massimo Cuomo
  • Simon R. Eugster
  • Aron Pfaff
  • Klaus Hoschke
  • Ralph Langkemper
  • Emilio Turco
  • Rizacan Sarikaya
  • Aviral Misra
  • Michele De Angelo
  • Francesco D’Annibale
  • Amine Bouterf
  • Xavier Pinelli
  • Anil Misra
  • Boris Desmorat
  • Marek Pawlikowski
  • Corinne Dupuy
  • Daria Scerrato
  • Patrice Peyre
  • Marco Laudato
  • Luca Manzari
  • Peter Göransson
  • Christian Hesch
  • Sofia Hesch
  • Patrick Franciosi
  • Justin Dirrenberger
  • Florian Maurin
  • Zacharias Vangelatos
  • Costas Grigoropoulos
  • Vasileia Melissinaki
  • Maria Farsari
  • Wolfgang Muller
  • Bilen Emek Abali
  • Christian Liebold
  • Gregor Ganzosch
  • Philip Harrison
  • Rafał Drobnicki
  • Leonid Igumnov
  • Faris Alzahrani
  • Tasawar Hayat
Original Article

Abstract

In the last decade, the exotic properties of pantographic metamaterials have been investigated and different mathematical models (both discrete or continuous) have been introduced. In a previous publication, a large part of the already existing literature about pantographic metamaterials has been presented. In this paper, we give some details about the next generation of research in this field. We present an organic scheme of the whole process of design, fabrication, experiments, models and image analyses.

Keywords

Pantographic structures Additive manufacturing Tomography Generalized continua Digital image correlation 

Notes

Acknowledgements

Francesco dell’Isola and Leonid Igumnov have received funding from the Government of the Russian Federation (Contract No. 14.Y26.31.0031). Mario Spagnuolo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No 665850. Anil Misra is funded by United States National Science Foundation (NSF) Grant CMMI-1727433. Christian Hesch gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG) under Grant HE5943/8-1 and DI2306/1-1. Sofia Hesch gratefully acknowledges the help of Heiko Bendler at the Institute of Mechanics at the Karlsruhe Institute of Technology (KIT) to perform the experimental investigations on organic sheets. Sofia Hesch also thanks Tamara Reinicke for supporting the investigations at the Chair of Product Development at the University of Siegen.

References

  1. 1.
    dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola, vol. 1. Springer, Cham (2014)zbMATHGoogle Scholar
  2. 2.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. première partie: théorie du second gradient. J. Mécanique 12, 236–274 (1973)zbMATHGoogle Scholar
  4. 4.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)zbMATHGoogle Scholar
  5. 5.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)Google Scholar
  7. 7.
    Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)zbMATHGoogle Scholar
  8. 8.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17(2), 85–112 (1964)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Sedov, L.: Variational methods of constructing models of continuous media. In: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, pp. 346–358. Springer (1968)Google Scholar
  10. 10.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)ADSzbMATHGoogle Scholar
  11. 11.
    Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)Google Scholar
  12. 12.
    Eremeyev, V.A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. In: Mathematics and mechanics of solids, p. 1081286518769960 (2018)Google Scholar
  13. 13.
    Eremeyev, V.A., Dell’Isola, F.: A note on reduced strain gradient elasticity. In: Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 301–310. Springer (2018)Google Scholar
  14. 14.
    Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 89(4), 242–256 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)Google Scholar
  19. 19.
    dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. In: Continuum Mechanics and Thermodynamics, pp. 1–34 (2018)Google Scholar
  20. 20.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)ADSGoogle Scholar
  21. 21.
    Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3d printing, experiments and numerical predictions. In: Continuum Mechanics and Thermodynamics, pp. 1–20 (2018)Google Scholar
  22. 22.
    Casal, P.: La capillarité interne. Cahier du groupe Français de rhéologie, CNRS VI 3, 31–37 (1961)Google Scholar
  23. 23.
    Casal, P.: Theory of second gradient and capillarity. C. R. Hebdomad. Seances de l’Acad. Sci. Ser. A 274(22), 1571 (1972)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, p. 012018. IOP Publishing (2011)Google Scholar
  25. 25.
    Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)Google Scholar
  27. 27.
    Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L. Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. In: Continuum Mechanics and Thermodynamics, pp. 1–13 (2019)Google Scholar
  28. 28.
    Morville, S., Carin, M., Peyre, P., Gharbi, M., Carron, D., Le Masson, P., Fabbro, R.: 2d longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. J. Laser Appl. 24(3), 032008 (2012)ADSGoogle Scholar
  29. 29.
    Vilaro, T., Kottman-Rexerodt, V., Thomas, M., Colin, C., Bertrand, P., Thivillon, L., Abed, S., Ji, V., Aubry, P., Peyre, P., et al.: Direct fabrication of a Ti–47Al–2Cr–2Nb alloy by selective laser melting and direct metal deposition processes. In: Advanced Materials Research, vol. 89, pp. 586–591. Trans Tech Publ (2010)Google Scholar
  30. 30.
    Gunenthiram, V., Peyre, P., Schneider, M., Dal, M., Coste, F., Fabbro, R.: Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel. J. Laser Appl. 29(2), 022303 (2017)ADSGoogle Scholar
  31. 31.
    Andreau, O., Koutiri, I., Peyre, P., Penot, J.-D., Saintier, N., Pessard, E., De Terris, T., Dupuy, C., Baudin, T.: Texture control of 316l parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 264, 21–31 (2019)Google Scholar
  32. 32.
    Zhang, D.: Entwicklung des selective laser melting (SLM) für Aluminiumwerkstoffe. Shaker (2004)Google Scholar
  33. 33.
    Keller, N., Ploshikhin, V.: New method for fast predictions of residual stress and distortion of AM parts. In: Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug, pp. 4–6 (2014)Google Scholar
  34. 34.
    Chia, H.N., Wu, B.M.: Recent advances in 3d printing of biomaterials. J. Biol. Bng. 9(1), 4 (2015)Google Scholar
  35. 35.
    Bhashyam, S., Hoon Shin, K., Dutta, D.: An integrated CAD system for design of heterogeneous objects. Rapid Prototyp. J. 6(2), 119–135 (2000)Google Scholar
  36. 36.
    Fischer, A.C., Mäntysalo, M., Niklaus, F.: Inkjet printing, laser-based micromachining and micro 3d printing technologies for MEMS. In: Handbook of Silicon Based MEMS Materials and Technologies, 2nd edn, pp. 550–564. Elsevier (2015)Google Scholar
  37. 37.
    Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016)ADSGoogle Scholar
  38. 38.
    Sakellari, I., Kabouraki, E., Gray, D., Purlys, V., Fotakis, C., Pikulin, A., Bityurin, N., Vamvakaki, M., Farsari, M.: Diffusion-assisted high-resolution direct femtosecond laser writing. Acs Nano 6(3), 2302–2311 (2012)Google Scholar
  39. 39.
    Combe, J.: Laser assisted writing of three-dimensional conductive nano-structure. MS thesis, University of California, Berkeley, and Swiss Federal Institute of Technology (ETH), Zurich (2016)Google Scholar
  40. 40.
    Terzaki, K., Vasilantonakis, N., Gaidukeviciute, A., Reinhardt, C., Fotakis, C., Vamvakaki, M., Farsari, M.: 3d conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 1(4), 586–597 (2011)ADSGoogle Scholar
  41. 41.
    Cote, A.P., Benin, A.I., Ockwig, N.W., O’keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)ADSGoogle Scholar
  42. 42.
    dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(11), 1268–1279 (2016)MathSciNetGoogle Scholar
  44. 44.
    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)Google Scholar
  45. 45.
    Ganzosch, G., Hoschke, K., Lekszycki, T., Giorgio, I., Turco, E., Müller, W.: 3d-measurements of 3d-deformations of pantographic structures. Tech. Mech. 38(3), 233–245 (2018)Google Scholar
  46. 46.
    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continum Mech. Thermodyn. 30, 1103–1123 (2018)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 85 (2016)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)Google Scholar
  49. 49.
    Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 14, 94–109 (2018)Google Scholar
  51. 51.
    Bauer, J., Schroer, A., Schwaiger, R., Tesari, I., Lange, C., Valdevit, L., Kraft, O.: Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105–112 (2015)Google Scholar
  52. 52.
    Lee, H.-T., Kim, M.-S., Lee, G.-Y., Kim, C.-S., Ahn, S.-H.: Shape memory alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small 14(23), 1801023 (2018)Google Scholar
  53. 53.
    Maggi, A., Li, H., Greer, J.R.: Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biom. 63, 294–305 (2017)Google Scholar
  54. 54.
    Maurin, F., Greco, F., Desmet, W.: Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. In: Continuum Mechanics and Thermodynamics, pp. 1–14 (2018)Google Scholar
  55. 55.
    Capobianco, G., Eugster, S.R., Winandy, T.: Modeling planar pantographic sheets using a nonlinear Euler–Bernoulli beam element based on B-spline functions. PAMM 18(1), 1–2 (2018)Google Scholar
  56. 56.
    Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  57. 57.
    Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    Maurin, F., Dedè, L., Spadoni, A.: Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn. 81(1–2), 77–96 (2015)MathSciNetGoogle Scholar
  59. 59.
    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Cuomo, M., Greco, L.: An implicit strong \(\text{G}^{1}\)-conforming formulation for the analysis of the Kirchhoff plate model. In: Continuum Mechanics and Thermodynamics, pp. 1–25 (2018)Google Scholar
  61. 61.
    Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)ADSMathSciNetGoogle Scholar
  62. 62.
    Greco, L., Cuomo, M., Contrafatto, L., Gazzo, S.: An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 324, 476–511 (2017)ADSMathSciNetGoogle Scholar
  63. 63.
    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1–2), 139–156 (2016)ADSMathSciNetzbMATHGoogle Scholar
  66. 66.
    Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(10), 1220–1244 (2016)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Rahali, Y., Giorgio, I., Ganghoffer, J., Dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125–127 (2018)Google Scholar
  69. 69.
    Research, V.: Phantom Ultrahigh-Speed Cameras UHS-12 Series Manual (July 2017)Google Scholar
  70. 70.
    Nikon: AF micro-Nikkor 200mm f/4d IF-ED from Nikon (June 2017)Google Scholar
  71. 71.
    LaVision GmbH, Product-Manual for DaVis 8.3: Imaging Tools. LaVision GmbH, (June 2015). Document name: 1003012_ImagingTools_D83.pdfGoogle Scholar
  72. 72.
    Dalmaz, A., Ducret, D., El Guerjouma, R., Reynaud, P., Franciosi, P., Rouby, D., Fantozzi, G., Baboux, J.: Elastic moduli of a 2.5 d cf/sic composite: experimental and theoretical estimates. Compos. Sci. Technol. 60(6), 913–925 (2000)Google Scholar
  73. 73.
    Franciosi, P., Gaertner, R.: On phase connectivity descriptions in modeling viscoelasticity of fiber or sphere reinforced composites. Polym. Compos. 19(1), 81–95 (1998)Google Scholar
  74. 74.
    Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 95(10), 1004–1011 (2015)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mech. Thermodyn. 31(1), 101–132 (2018)ADSMathSciNetGoogle Scholar
  77. 77.
    Franciosi, P., Lormand, G.: Using the Radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4), 585–606 (2004)zbMATHGoogle Scholar
  78. 78.
    Franciosi, P.: On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. Int. J. Solids Struct. 42(11–12), 3509–3531 (2005)zbMATHGoogle Scholar
  79. 79.
    Franciosi, P.: A decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147, 1–19 (2018)Google Scholar
  80. 80.
    Harrison, P., Alvarez, M.F., Anderson, D.: Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. 154, 2–18 (2018)Google Scholar
  81. 81.
    Giorgio, I., Harrison, P., Dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2216), 20180063 (2018)ADSGoogle Scholar
  82. 82.
    Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)Google Scholar
  83. 83.
    Cima, M., Sachs, E., Cima, L., Yoo, J., Khanuja, S., Borland, S., Wu, B., Giordano, R.: Computer-derived microstructures by 3d printing: bio-and structural materials. In: Solid Freeform Fabrication Symposium Proceedings, DTIC Document, pp. 181–90 (1994)Google Scholar
  84. 84.
    Giorgio, I., Andreaus, U., Lekszycki, T., Corte, A.D.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Sutton, M., Orteu, J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)Google Scholar
  86. 86.
    Hild, F., Roux, S.: Digital image correlation. In: Rastogi, P., Hack, E. (eds.) Optical Methods for Solid Mechanics. A Full-Field Approach, pp. 183–228. Wiley, Weinheim (2012)Google Scholar
  87. 87.
    Hild, F., Roux, S.: Comparison of local and global approaches to digital image correlation. Exp. Mech. 52(9), 1503–1519 (2012)Google Scholar
  88. 88.
    Tomičević, Z., Hild, F., Roux, S.: Mechanics-aided digital image correlation. J. Strain Anal. Eng. Des. 48(5), 330–343 (2013)Google Scholar
  89. 89.
    Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. In. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Francesco dell’Isola
    • 1
    • 2
    • 3
    • 4
  • Pierre Seppecher
    • 5
  • Mario Spagnuolo
    • 1
    • 6
    Email author
  • Emilio Barchiesi
    • 1
    • 7
  • François Hild
    • 8
  • Tomasz Lekszycki
    • 9
  • Ivan Giorgio
    • 1
    • 7
  • Luca Placidi
    • 1
    • 10
  • Ugo Andreaus
    • 7
  • Massimo Cuomo
    • 11
  • Simon R. Eugster
    • 12
  • Aron Pfaff
    • 13
  • Klaus Hoschke
    • 13
  • Ralph Langkemper
    • 13
  • Emilio Turco
    • 14
  • Rizacan Sarikaya
    • 15
  • Aviral Misra
    • 16
  • Michele De Angelo
    • 17
  • Francesco D’Annibale
    • 1
  • Amine Bouterf
    • 8
  • Xavier Pinelli
    • 8
  • Anil Misra
    • 18
  • Boris Desmorat
    • 19
    • 20
  • Marek Pawlikowski
    • 21
  • Corinne Dupuy
    • 22
  • Daria Scerrato
    • 1
  • Patrice Peyre
    • 22
  • Marco Laudato
    • 1
    • 23
  • Luca Manzari
    • 24
  • Peter Göransson
    • 24
  • Christian Hesch
    • 25
  • Sofia Hesch
    • 26
  • Patrick Franciosi
    • 6
  • Justin Dirrenberger
    • 22
  • Florian Maurin
    • 27
  • Zacharias Vangelatos
    • 28
    • 29
  • Costas Grigoropoulos
    • 28
    • 29
  • Vasileia Melissinaki
    • 30
  • Maria Farsari
    • 30
  • Wolfgang Muller
    • 31
  • Bilen Emek Abali
    • 31
  • Christian Liebold
    • 31
  • Gregor Ganzosch
    • 31
  • Philip Harrison
    • 32
  • Rafał Drobnicki
    • 21
    • 33
  • Leonid Igumnov
    • 3
  • Faris Alzahrani
    • 4
  • Tasawar Hayat
    • 4
  1. 1.International Research Center M&MoCSUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Dipartimento di Ingegneria Civile, Edile-Architettura e AmbientaleUniversità degli Studi dell’AquilaL’AquilaItaly
  3. 3.Research Institute for MechanicsNational Research Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia
  4. 4.NAAM Research Group, Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Institut de Mathématiques de ToulonUniversité de ToulonToulonFrance
  6. 6.CNRS, LSPM UPR3407Université Paris 13VilletaneuseFrance
  7. 7.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità degli Studi di Roma “La Sapienza”RomeItaly
  8. 8.Laboratoire de Mécanique et Technologie (LMT)ENS Paris-Saclay/CNRS/Université Paris-SaclayCachan CedexFrance
  9. 9.Faculty of Production EngineeringWarsaw University of TechnologyWarsawPoland
  10. 10.International Telematic University UninettunoRomeItaly
  11. 11.Dipartimento di Ingegneria Civile e Architettura (DICAR)Università degli Studi di CataniaCataniaItaly
  12. 12.Institute for Nonlinear MechanicsUniversity of StuttgartStuttgartGermany
  13. 13.Fraunhofer Institute for High-Speed DynamicsErnst-Mach-Institut, EMIFreiburgGermany
  14. 14.Department of Architecture, Design and Urban Planning (DADU)University of SassariAlgheroItaly
  15. 15.Mechanical Engineering (ME)The University of KansasLawrenceUSA
  16. 16.Blue Valley High SchoolStilwellUSA
  17. 17.Dipartimento di Ingegneria Civile, Edile Architettura e Ambientale (DICEAA)Università degli Studi dell’AquilaL’AquilaItaly
  18. 18.Civil, Environmental and Architectural Engineering DepartmentUniversity of KansasLawrenceUnited States
  19. 19.UMPC Université Paris 06, CNRS, UMR 7190, Institut d’AlembertSorbonne UniversitéParis Cedex 05France
  20. 20.Université Paris Sud 11OrsayFrance
  21. 21.Department of Machinery Design and Biomedical Engineering, Institute of Mechanics and Printing TechnologyWarsaw University of TechnologyWarsawPoland
  22. 22.Laboratoire PIMM, Arts et Métiers-ParisTechCNRS, CnamParisFrance
  23. 23.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly
  24. 24.Marcus Wallenberg Laboratory for Sound and Vibration ResearchKTH Royal Institute of TechnologyStockholmSweden
  25. 25.Chair of Computational MechanicsUniversity of SiegenSiegenGermany
  26. 26.Chair of Product DevelopmentUniversity of SiegenSiegenGermany
  27. 27.DMMS Lab Flanders MakeLeuvenBelgium
  28. 28.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  29. 29.Laser Thermal Laboratory, Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  30. 30.Institute of Electronic Structure and Laser (IESL)Foundation of Research and Technology, Hellas (FORTH)HeraklionGreece
  31. 31.Faculty of MechanicsBerlin University of TechnologyBerlinGermany
  32. 32.School of EngineeringUniversity of GlasgowGlasgowUK
  33. 33.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations