An incremental-iterative BEM methodology to solve 3D thermoelastic contact problem including variable thermal resistance in the contact zone

  • J. Vallepuga-Espinosa
  • Iván Ubero-MartínezEmail author
  • Lidia Sánchez-González
  • J. Cifuentes-Rodríguez
Original Article


This work presents a new incremental-iterative method based on the boundary element method to solve 3D thermoelastic contact problems including a variable thermal contact resistance. The consideration of a variable thermal contact resistance implies that both thermal and thermoelastic problems are coupled since the variable thermal contact resistance is a function of the contact normal traction. Thus the proposed method determines incrementally the equilibrium configuration of the system by solving the coupled thermal and thermoelastic problems. The correct value of the thermal resistance is obtained iteratively. The robustness and accuracy of the proposed method is shown by solving a numerical problem and comparing the results with other methods presented in the literature.


Boundary element method Incremental procedure Elastic contact problem Thermoelastic contact problem Contact thermal resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Martynyak, R.M., Chumak, K.A.: Thermoelastic contact of half-spaces with equal thermal distortivities in the presence of a heat-permeable intersurface gap. J. Math. Sci. 165(3), 355–370 (2010)CrossRefGoogle Scholar
  2. 2.
    Comninou, M., Dundurs, J.: On the Barber boundary conditions for thermoelastic contact. J. Appl. Mech. 46, 849–853 (1979)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Comninou, M., Dundurs, J., Barber, J.R.: Planar Hertz contact with heat conduction. J. Appl. Mech. 48, 549–554 (1981)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Dundurs, J.: Distortion of a body caused by free thermal expansion. Mech. Res. Commun. 1(3), 121–124 (1974)CrossRefGoogle Scholar
  5. 5.
    Alonso, P., Garrido García, J.: BEM applied to 2D thermoelastic con- tact problems including conduction and forced convection in interstitial zones. Eng. Anal. Bound. Elem. 15(3), 249–259 (1995)CrossRefGoogle Scholar
  6. 6.
    Vallepuga Espinosa, J., Foces Mediavilla, A.: Boundary element method applied to three dimensional thermoelastic contact. Eng. Anal. Bound. Elem. 36(6), 928–933 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Giannopoulos, G.I., Anifantis, N.K.: A BEM analysis for thermomechanical closure of interfacial cracks incorporating friction and thermal resistance. Comput. Methods Appl. Mech. Eng. 196(4–6), 1018–1029 (2007)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Garrido, J., Foces, A., París, F.: An incremental procedure for three- dimensional contact problems with friction. Comput. Struct. 50, 201–215 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Man, K.W., Aliabadi, M.H.: BEM frictional contact analysis: modelling considerations. Eng. Anal. Bound. Elem. 11, 77–85 (1993)CrossRefGoogle Scholar
  10. 10.
    Man, K.W., Aliabadi, M.H., Rooke, D.P.: BEM frictional con- tact analysis: load Incremental technique. Comput. Struct. 47(6), 893–905 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Aliabadi, F.M.H.: The Boundary Element Method: Applications in Solids and Structures, vol. 2. Wiley, Chichester (2002)zbMATHGoogle Scholar
  12. 12.
    Sfantos, G.K., Aliabadi, M.H.: A boundary element formulation for three-dimensional sliding wear simulation. Wear 262, 672–683 (2007)CrossRefGoogle Scholar
  13. 13.
    Sfantos, G.K., Aliabadi, M.H.: Wear simulation using an incremental sliding boundary element method. Wear 260, 1119–1128 (2006)CrossRefGoogle Scholar
  14. 14.
    Rodríguez-Tembleque, L., Abascal, R., Aliabadi, M.H.: Anisotropic wear framework for 3D contact and rolling problems. Comput. Methods Appl. Mech. Eng. 241–244, 1–19 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rodríguez-Tembleque, L., Sáez, A., Aliabadi, M.: Indentation re- sponse of piezoelectric films under frictional contact. Int. J. Eng. Sci. 107, 36–53 (2016)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rodríguez-Tembleque, L., García-Macías, E., Sáez, A.: Cnt-polymer nanocomposites under frictional contact conditions. Compos. Part B Eng. 154, 114–127 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhang, S., Li, X.: A self-adaptive projection method for contact problems with the BEM. Appl. Math. Model. 55, 145–159 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, S., Li, X., Ran, R.: Self-adaptive projection and boundary element methods for contact problems with tresca friction. Commun. Nonlinear Sci. Numer. Simul. 68, 72–85 (2019)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Suárez, A., González, R., Sánchez, L., Vallepuga, J.: Iterative proce- dure to solve thermoelastic contact problems between 3D solids using BEM and OOP. Actas XXII Jornadas de Paralelismo La Laguna, (2011)Google Scholar
  20. 20.
    Vallepuga, J., Sánchez-González, L., Ubero, I.: Java application to solve thermoelastic contact problems using the boundary element method. Adv. Bound. Elem. Meshless Tech. XIX, 147–156 (2018)Google Scholar
  21. 21.
    Vallepuga, J., Sánchez-González, L., Ubero, I., Castillo, V. R.-D.: The boundary element method applied to the resolution of problems in strength of materials and elasticity. In: International joint conference SOCO’18-CISIS’18-ICEUTE’18, 544–552 (2018)Google Scholar
  22. 22.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques, pp. 177–236. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hartmann, F.: The somigliana identity on piecewise smooth surfaces. J Elast. 11(4), 403–423 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Paris, F., Foces, A., Garrido, J.A.: Application of boundary element method to solve three-dimensional elastic contact problems without friction. Comput. Struct. 43, 19–30 (1992)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Cooper, M.G., Mikic, B.B., Yovanovich, M.M.: Thermal contact conductance. J. Heat Mass Transf. 12, 279–300 (1969)CrossRefGoogle Scholar
  26. 26.
    Paris, F., Garrido, J.A.: Aspectos numericos de la aplicacion del metodo de los elementos de contorno al problema de contacto. Revista Internacional de Metodos Numericos para Calculo y Diseño en Ingenieria 2(1), 43 (1986)Google Scholar
  27. 27.
    MATLAB and Statistics Toolbox Release: The MathWorks Inc. Natick, Massachusetts, United States (2016b)Google Scholar
  28. 28.
    Youssef, H.M., El-Bary, A.A.: Thermal shock problem of generalized thermoelastic layered composite material with variable thermal conductivity. Math. Probl. Eng. 2006, 1–14 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Aouadi, Moncef: Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion. A. Angew. Math. Phys. 57, 351–367 (2006)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wang, Yingze, Liu, Dong, Wang, Qian, Shu, Chang: Thermoelastic response of thin plate with variable material properties under transient thermal shock. Int. J. Mech. Sci. 104, 200–206 (2015)CrossRefGoogle Scholar
  31. 31.
    Sherief, Hany H., Hamza, Farid A.: Modeling of variable thermal condutivity in a generalized thermoelastic infinitely long hollow cylinder. Meccanica 51, 551–558 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, Chenlin, Guo, Huili, Tian, Xin, Tian, Xiaogeng: Transient reponse for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock. J Therm. Stress. 40(3), 389–401 (2017)CrossRefGoogle Scholar
  33. 33.
    Li, D., He, T.: Investigation of generalized piezoelectri-thermoelastic problem with nonlocal effect and temperature-dependent properties. Heliyon 4(10), e00860 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Tecnología Minera, Topografía y de EstructurasUniversidad de LeónLeónSpain
  2. 2.Departamento de Ingenierías Mecánica, Informática y AeroespacialUniversidad de LeónLeónSpain

Personalised recommendations