Advertisement

Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects

  • G. Y. Zhang
  • X.-L. GaoEmail author
Original Article
  • 16 Downloads

Abstract

A new model for determining band gaps for flexural elastic wave propagation in periodic composite plate structures containing square and cruciform inclusions is developed using a non-classical Mindlin plate model incorporating the microstructure and surface energy effects. The new model reduces to the classical elasticity-based counterpart when both the microstructure and surface energy effects are not considered. The plane wave expansion method and the Bloch theorem for periodic media are used in the formulation. The band gaps predicted by the newly developed model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, and the volume fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the microstructure and surface energy effects on the band gaps are significant only when the plate thickness is small. In addition, it is found that the first band gap size decreases with the increase of the unit cell length according to both the current non-classical and classical models. Moreover, it is seen that the volume fraction has a significant effect on the first band gap size, and large band gaps can be obtained by tailoring the volume fraction and inclusion shape.

Keywords

Band gaps Flexural wave propagation Plane wave expansion method Bloch theorem Couple stress theory Surface elasticity theory Mindlin plate Size effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Prof. Victor Eremeyev and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

References

  1. 1.
    Ai, L., Gao, X.-L.: Micromechanical modeling of 3-D printable interpenetrating phase composites with tailorable effective elastic properties including negative Poisson’s ratio. J. Micromech. Mol. Phys. 2, 1750015-1–1750015-21 (2017)CrossRefGoogle Scholar
  2. 2.
    Ai, L., Gao, X.-L.: Evaluation of effective elastic properties of 3-D printable interpenetrating phase composites using the meshfree radial point interpolation method. Mech. Adv. Mater. Struct. 25, 1241–1251 (2018)CrossRefGoogle Scholar
  3. 3.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. Z. Angew. Math. Mech. 90, 231–240 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bacigalupo, A., Gambarotta, L.: Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces. J. Mech. Phys. Solids 102, 165–186 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cao, Y., Hou, Z., Liu, Y.: Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A 327(2), 247–253 (2004)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Wang, L.: Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl. Phys. Lett. 105, 191907-1–191907-5 (2014)Google Scholar
  7. 7.
    Cheng, Z.B., Xu, Y.G., Zhang, L.L.: Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method. Int. J. Mech. Sci. 100, 112–125 (2015)CrossRefGoogle Scholar
  8. 8.
    El-Naggar, S.A., Mostafa, S.I., Rafat, N.H.: Complete band gaps of phononic crystal plates with square rods. Ultrasonics 52, 536–542 (2012)CrossRefGoogle Scholar
  9. 9.
    Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Contin. Mech. Thermodyn. 28, 407–422 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gao, R.Z., Zhang, G.Y., Ioppolo, T., Gao, X.-L.: Elastic wave propagation in a periodic composite beam structure: a new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects. J. Micromech. Mol. Phys. 3, 1840005-1–1840005-22 (2018)CrossRefGoogle Scholar
  12. 12.
    Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275-1–20160275-25 (2016)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Gao, X.L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Contin. Mech. Thermodyn. 28, 195–213 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    George, G.A.: Surface modification and analysis of ultra-high-modulus polyethylene fibres for composites, chapter 7. In: Feast, W.J., Munro, H.S., Richards, R.W. (eds.) Polymer Surfaces and Interfaces II, pp. 161–201. Wiley, Hoboken, NJ (1993)Google Scholar
  17. 17.
    Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hsu, J.-C., Wu, T.-T.: Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Phys. Rev. B 74, 144303-1–144303-8 (2006)ADSGoogle Scholar
  21. 21.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1986)zbMATHGoogle Scholar
  22. 22.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Lewin, M., Mey-Marom, A., Frank, R.: Surface free energies of polymeric materials, additives and minerals. Polym. Adv. Technol. 16, 429–441 (2005)CrossRefGoogle Scholar
  24. 24.
    Li, L.: Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13(9), 1870–1876 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Li, Y., Wei, P., Zhou, Y.: Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity. Acta Mech. 227, 1005–1023 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, W., Chen, J., Liu, Y., Su, X.: Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys. Lett. A 376, 605–609 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Liu, X., Shi, Z., Mo, Y.L.: Attenuation zones of initially stressed periodic Mindlin plates on an elastic foundation. Int. J. Mech. Sci. 115, 12–23 (2016)CrossRefGoogle Scholar
  28. 28.
    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95, 880–887 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26, 639–681 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)CrossRefGoogle Scholar
  34. 34.
    Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME J. Appl. Mech. 71, 663–671 (2004)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Sigalas, M.M., Economou, E.N.: Elastic waves in plates with periodically placed inclusions. J. Appl. Phys. 75, 2845–2850 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Susa, N.: Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes. J. Appl. Phys. 91, 3501–3510 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26, 675–684 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, G.Y., Gao, X.-L.: Elastic wave propagation in 3-D periodic composites: band gaps incorporating microstructure effects. Compos. Struct. 204, 920–932 (2018)CrossRefGoogle Scholar
  42. 42.
    Zhang, G.Y., Gao, X.-L.: Elastic wave propagation in a periodic composite plate structure: band gaps incorporating microstructure, surface energy and foundation effects. J. Mech. Mater. Struct. (2019) (in press) Google Scholar
  43. 43.
    Zhang, G.Y., Gao, X.-L., Bishop, J.E., Fang, H.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189, 263–272 (2018)CrossRefGoogle Scholar
  44. 44.
    Zhang, G.Y., Gao, X.-L., Ding, S.R.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 229, 4199–4214 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Engineering Mechanics, School of Civil EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Mechanical Engineering, Lyle School of EngineeringSouthern Methodist UniversityDallasUSA

Personalised recommendations