Advertisement

Continuum mechanics with torsion

  • Ilya PeshkovEmail author
  • Evgeniy Romenski
  • Michael Dumbser
Original Article
  • 20 Downloads

Abstract

This paper is an attempt to introduce methods and concepts of the Riemann–Cartan geometry largely used in such physical theories as general relativity, gauge theories, solid dynamics to fluid dynamics in general and to studying and modeling turbulence in particular. Thus, in order to account for the rotational degrees of freedom of the irregular dynamics of small-scale vortexes, we further generalize our unified first-order hyperbolic formulation of continuum fluid and solid mechanics which treats the flowing medium as a Riemann–Cartan manifold with zero curvature but non-vanishing torsion. We associate the rotational degrees of freedom of the main field of our theory, the distortion field, to the dynamics of microscopic (unresolved) vortexes. The distortion field characterizes the deformation and rotation of the material elements and can be viewed as anholonomic basis triad with non-vanishing torsion. The torsion tensor is then used to characterize distortion’s spin and is treated as an independent field with its own time evolution equation. This new governing equation has essentially the structure of the nonlinear electrodynamics in a moving medium and can be viewed as a Yang–Mills-type gauge theory. The system is closed by providing an example of the total energy potential. The extended system describes not only irreversible dynamics (which raises the entropy) due to the viscosity or plasticity effect, but it also has dispersive features which are due to the reversible energy exchange (which conserves the entropy) between micro- and macroscales. Both the irreversible and dispersive processes are represented by relaxation-type algebraic source terms so that the overall system remains first-order hyperbolic. The turbulent state is then treated as an excitation of the equilibrium (laminar) state due to the nonlinear interplay between dissipation and dispersion.

Keywords

Riemann–Cartan geometry Torsion Hyperbolic equations Turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to A. Golovnev for the discussions of concepts of teleparallel gravity. Also, the authors acknowledge stimulating discussions with L. Margolin on the concept of macroscopic observer. Furthermore, I.P. greatly acknowledges the support by Agence nationale de la recherche (FR) (Grant No. ANR-11-LABX-0040-CIMI) within the program ANR-11-IDEX-0002-02. Results by E.R. obtained in Sects. 5 and 7 were supported by the Russian Science Foundation grant (project 19-77-20004). The work by M.D. was funded by the European Union’s Horizon 2020 Research and Innovation Programme under the project ExaHyPE, Grant No. 671698 (call FETHPC-1-2014) and by the GNCS group of the Istituto Nazionale di Alta Matematica (INdAM). Furthermore, M.D. acknowledges funding from the Italian Ministry of Education, University and Research (MIUR) through the PRIN 2017 project Innovative numerical methods for evolutionary partial differential equations and applications and via the Departments of Excellence Initiative 2018{2022 attributed to DICAM of the University of Trento (grant L. 232/2016), as well as financial support obtained from the University of Trento via the Strategic Initiative Modeling and Simulation.

References

  1. 1.
    Aldrovandi, R., Pereira, J.G.: Teleparallel Gravity, vol. 173. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-94-007-5143-9 zbMATHGoogle Scholar
  2. 2.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013).  https://doi.org/10.1080/00107514.2014.885579 zbMATHGoogle Scholar
  3. 3.
    Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity, Volume 4 of Series on Knots and Everything. World Scientific, Singapore (1994).  https://doi.org/10.1142/2324 zbMATHGoogle Scholar
  4. 4.
    Balmforth, N.J., Frigaard, I.A., Ovarlez, G.: Yielding to stress: recent developments in viscoplastic fluid mechanics. Ann. Rev. Fluid Mech. 46, 121–146 (2014).  https://doi.org/10.1146/annurev-fluid-010313-141424 ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Barbagallo, G.: Modeling fibrous composite reinforcements and metamaterials: theoretical development and engineering applications. Ph.D. Thesis, INSA, Lyon (2017).  https://doi.org/10.13140/RG.2.2.26062.56649
  6. 6.
    Barton, P.T., Drikakis, D., Romenski, E.I.: An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Methods Eng. (2009).  https://doi.org/10.1002/nme.2695 zbMATHGoogle Scholar
  7. 7.
    Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011).  https://doi.org/10.1007/s00707-011-0468-0 zbMATHGoogle Scholar
  8. 8.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Thermoelasticity with dual internal variables. J. Therm. Stress. 34(5–6), 413–430 (2011).  https://doi.org/10.1080/01495739.2011.564000 zbMATHGoogle Scholar
  9. 9.
    Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. A Math. Phys. Eng. Sci. 231(1185), 263–273 (1955).  https://doi.org/10.1098/rspa.1955.0171 ADSMathSciNetGoogle Scholar
  10. 10.
    Böhmer, C.G., Lee, Y., Neff, P.: Soliton solutions in geometrically nonlinear Cosserat micropolar elasticity with large deformations. Wave Mot. 84, 110–124 (2019).  https://doi.org/10.1016/j.wavemoti.2018.10.005 MathSciNetGoogle Scholar
  11. 11.
    Böhmer, C.G., Neff, P., Seymenoğlu, B.: Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity. Wave Mot. 60, 158–165 (2016).  https://doi.org/10.1016/j.wavemoti.2015.09.006 MathSciNetGoogle Scholar
  12. 12.
    Bolmatov, D., Brazhkin, V.V., Trachenko, K.: Thermodynamic behaviour of supercritical matter. Nat. Commun. 4(2331), 1–7 (2013).  https://doi.org/10.1038/ncomms3331 Google Scholar
  13. 13.
    Bolmatov, D., Zav’yalov, D., Zhernenkov, M., Musaev, E.T., Cai, Y.Q.: Unified phonon-based approach to the thermodynamics of solid, liquid and gas states. Ann. Phys. 363, 221–242 (2015).  https://doi.org/10.1016/j.aop.2015.09.018 ADSMathSciNetGoogle Scholar
  14. 14.
    Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cai, Y.Q., Cunsolo, A.: Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 6(15), 3048–3053 (2015)Google Scholar
  15. 15.
    Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cunsolo, A., Cai, Y.Q.: Thermally triggered phononic gaps in liquids at THz scale. Sci. Rep. 6, 19469 (2016).  https://doi.org/10.1038/srep19469 ADSGoogle Scholar
  16. 16.
    Boscheri, W., Dumbser, M., Loubère, R.: Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput. Fluids 134–135, 111–129 (2016).  https://doi.org/10.1016/j.compfluid.2016.05.004 MathSciNetzbMATHGoogle Scholar
  17. 17.
    Brazhkin, V.V., Fomin, Y.D., Lyapin, A.G., Ryzhov, V.N., Trachenko, K.: Two liquid states of matter: a dynamic line on a phase diagram. Phys. Rev. E 85(3), 031203 (2012).  https://doi.org/10.1103/PhysRevE.85.031203 ADSGoogle Scholar
  18. 18.
    Cai, Y.-F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 79(10), 106901 (2016).  https://doi.org/10.1088/0034-4885/79/10/106901 ADSGoogle Scholar
  19. 19.
    Cartan, É.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986)zbMATHGoogle Scholar
  20. 20.
    Castro, M., Gallardo, J.M., López-GarcÍa, J.A., Parés, C.: Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46(2), 1012–1039 (2008).  https://doi.org/10.1137/060674879 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Chen, Y., Wheeler, L.: Derivatives of the stretch and rotation tensors. J. Elast. 32(3), 175–182 (1993).  https://doi.org/10.1007/BF00131659 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Cho, Y.M.: Einstein Lagrangian as the translational Yang–Mills Lagrangian. Phys. Rev. D 14(10), 2521–2525 (1976).  https://doi.org/10.1103/PhysRevD.14.2521 ADSMathSciNetGoogle Scholar
  23. 23.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables (1909)Google Scholar
  24. 24.
    Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1(3), 16001 (2016).  https://doi.org/10.1038/natrevmats.2016.1 ADSGoogle Scholar
  25. 25.
    Dahler, J.S., Scriven, L.E.: Theory of structured continua I. General consideration of angular momentum and polarization. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 275(1363), 504–527 (1963).  https://doi.org/10.1098/rspa.1963.0183 ADSGoogle Scholar
  26. 26.
    Dell’Isola, F., Eremeyev, V.A.: Some Introductory and Historical Remarks on Mechanics of Microstructured Materials, pp. 1–20. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73694-5_1 Google Scholar
  27. 27.
    Delphenich, D.H.: The use of the teleparallelism connection in continuum mechanics. Math. Mech. Solids 21(10), 1260–1275 (2016).  https://doi.org/10.1177/1081286514563819 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. (2018).  https://doi.org/10.1111/sapm.12238 Google Scholar
  29. 29.
    Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227(8), 3971–4001 (2008).  https://doi.org/10.1016/j.jcp.2007.12.005 ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Dumbser, M., Peshkov, I., Romenski, E.: A unified hyperbolic formulation for viscous fluids and elastoplastic solids. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016, Volume 237 of Springer Proceedings in Mathematics and Statistics, pp. 451–463. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91548-7_34
  31. 31.
    Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016).  https://doi.org/10.1016/j.jcp.2016.02.015 ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Comput. Phys. 348, 298–342 (2017).  https://doi.org/10.1016/j.jcp.2017.07.020 ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Ehlers, W., Bidier, S.: Cosserat media. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics, pp. 1–12. Springer, Berlin (2018).  https://doi.org/10.1007/978-3-662-53605-6_149-1
  34. 34.
    Eringen, A. C.: Mechanics of micromorphic continua. In: Kröner E. (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer, Berlin (1968).  https://doi.org/10.1007/978-3-662-30257-6_2
  35. 35.
    Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge, pp. 4–20 (2006)  https://doi.org/10.1017/CBO9780511755590.003
  36. 36.
    Forest, S.: Micromorphic media. In: Eremeyev, V.A., Altenbach, H. (eds.) Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 541, pp. 249–300. Springer, Vienna (2013).  https://doi.org/10.1007/978-3-7091-1371-4_5 Google Scholar
  37. 37.
    Freistühler, H., Temple, B.: Causal dissipation for the relativistic dynamics of ideal gases. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2201), 20160729 (2017).  https://doi.org/10.1098/rspa.2016.0729 ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Futhazar, G., Le Marrec, L., Rakotomanana-Ravelonarivo, L.: Covariant gradient continua applied to wave propagation within defective material. Arch. Appl. Mech. 84(9–11), 1339–1356 (2014).  https://doi.org/10.1007/s00419-014-0873-7 ADSzbMATHGoogle Scholar
  39. 39.
    Gavrilyuk, S.: Multiphase flow modeling via Hamilton’s principle. In: Dell’Isola, F., Gavrilyuk, S. (eds.) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol. 535, pp. 163–210. Springer, Vienna (2011).  https://doi.org/10.1007/978-3-7091-0983-0_4
  40. 40.
    Geroch, R., Lindblom, L.: Dissipative relativistic fluid theories of divergence type. Phys. Rev. D 42(6), 1855–1861 (1990).  https://doi.org/10.1103/PhysRevD.41.1855 ADSMathSciNetGoogle Scholar
  41. 41.
    Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Godunov, S.K.: Elements of Mechanics of Continuous Media, 1st edn. Nauka, Moscow (1978)Google Scholar
  43. 43.
    Godunov, S.K., Mikhaîlova, T.Y., Romenskiî, E.I.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Sib. Math. J. 37(4), 690–705 (1996).  https://doi.org/10.1007/BF02104662 zbMATHGoogle Scholar
  44. 44.
    Godunov, S.K., Peshkov, I.M.: Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium. Comput. Math. Math. Phys. 50(8), 1409–1426 (2010).  https://doi.org/10.1134/S0965542510080117 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Godunov, S.K., Romenskii, E.I.: Nonstationary equations of nonlinear elasticity theory in eulerian coordinates. J. Appl. Mech. Tech. Phys. 13(6), 868–884 (1972).  https://doi.org/10.1007/BF01200547 ADSGoogle Scholar
  46. 46.
    Godunov, S.K., Romenskii, E.I., Romenski, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  47. 47.
    Golovnev, A., Koivisto, T., Sandstad, M.: On the covariance of teleparallel gravity theories. Class. Quantum 34(14), 145013 (2017).  https://doi.org/10.1088/1361-6382/aa7830 ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Grinyaev, Y.V., Chertova, N.V.: Field theory of defects. Part I. Phys. Mesomech. 3(5), 19–32 (2000)zbMATHGoogle Scholar
  49. 49.
    Hayashi, K.: The gauge theory of the translation group and underlying geometry. Phys. Lett. B 69(4), 441–444 (1977).  https://doi.org/10.1016/0370-2693(77)90840-1 ADSGoogle Scholar
  50. 50.
    Hayashi, K., Nakano, T.: Extended translation invariance and associated gauge fields. Prog. Theor. Phys. 38(2), 491–507 (1967).  https://doi.org/10.1143/PTP.38.491 ADSGoogle Scholar
  51. 51.
    Hehl, F.W., Obukhov, Y.N.: Elie Cartan’s torsion in geometry and in field theory, an essay. Annales de la Fondation Louis de Broglie 32(2–3), 157–194 (2007)zbMATHGoogle Scholar
  52. 52.
    Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48(3), 393–416 (1976).  https://doi.org/10.1103/RevModPhys.48.393 ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Hohmann, M., Järv, L., Krššák, M., Pfeifer, C.: Teleparallel theories of gravity as analogue of nonlinear electrodynamics. Phys. Rev. D 97(10), 104042 (2018).  https://doi.org/10.1103/PhysRevD.97.104042 ADSMathSciNetGoogle Scholar
  54. 54.
    Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100(1–2), 310–331 (1976).  https://doi.org/10.1016/0003-4916(76)90064-6 ADSMathSciNetGoogle Scholar
  55. 55.
    Jackson, H., Nikiforakis, N.: A Numerical Scheme for Non-Newtonian Fluids and Plastic Solids under the GPR Model (2018). arXiv:1811.04766
  56. 56.
    Jackson, J.D.: Classical Electrodynamics. Wiley, London (1999)zbMATHGoogle Scholar
  57. 57.
    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006).  https://doi.org/10.1038/nature04801 ADSGoogle Scholar
  58. 58.
    Kadić, A., Edelen, D.G.B.: A Gauge Theory of Dislocations and Disclinations, Volume 174 of Lecture Notes in Physics. Springer, Berlin (1983).  https://doi.org/10.1007/3-540-11977-9 zbMATHGoogle Scholar
  59. 59.
    Katanaev, M.O., Volovich, I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. 216(1), 1–28 (1992).  https://doi.org/10.1016/0003-4916(52)90040-7 ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Kleinert, H.: Multivalued Fields. World Scientific, Singapore (2008).  https://doi.org/10.1142/6742 zbMATHGoogle Scholar
  61. 61.
    Kosevich, M.A.: Dynamical theory of dislocation. Sov. Phys. Usp 7, 837 (1965)ADSMathSciNetGoogle Scholar
  62. 62.
    Kröner, E.: The dislocation as a fundamental new concept in continuum mechanics. In: Stadelmaier, H.H., Austin, W.W. (eds.) Materials Science Research, pp. 281–290. Springer, Boston (1963).  https://doi.org/10.1007/978-1-4899-5537-1_14
  63. 63.
    Krssak, M., van den Hoogen, R.J., Pereira, J.G., Boehmer, C.G., Coley, A.A.: Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach (2018). arXiv:1810.12932
  64. 64.
    Lazar, M.: Dislocation theory as a 3-dimensional translation gauge theory. Ann. Phys. (Leipzig) 9(6), 461–473 (2000).  https://doi.org/10.1002/1521-3889(200006)9:6<461::AID-ANDP461>3.0.CO;2-B
  65. 65.
    Lazar, M.: An elastoplastic theory of dislocations as a physical field theory with torsion. J. Phys. A Math. Gen. 35(8), 1983–2004 (2002).  https://doi.org/10.1088/0305-4470/35/8/313 ADSMathSciNetzbMATHGoogle Scholar
  66. 66.
    Liu, I.-S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. 169(1), 191–219 (1986).  https://doi.org/10.1016/0003-4916(86)90164-8 ADSMathSciNetGoogle Scholar
  67. 67.
    Madeo, A., Neff, P., Barbagallo, G., D’Agostino, M.V., Ghiba, I.-D.: A review on wave propagation modeling in band-gap metamaterials via enriched continuum models. In: Steigmann, D., dell’Isola, F., Sofonea, M. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69, pp. 89–105. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-3764-1_6 Google Scholar
  68. 68.
    Margolin, L.G.: Finite scale theory: the role of the observer in classical fluid flow. Mech. Res. Commun. 57, 10–17 (2014).  https://doi.org/10.1016/j.mechrescom.2013.12.004 Google Scholar
  69. 69.
    Mazaheri, A., Ricchiuto, M., Nishikawa, H.: A first-order hyperbolic system approach for dispersion. J. Comput. Phys. 321, 593–605 (2016).  https://doi.org/10.1016/j.jcp.2016.06.001 ADSMathSciNetzbMATHGoogle Scholar
  70. 70.
    Megahed, M., Mindt, H.-W., N’Dri, N., Duan, H., Desmaison, O.: Metal additive-manufacturing process and residual stress modeling. Integr. Mater. Manuf. Innov. 5(1), 4 (2016).  https://doi.org/10.1186/s40192-016-0047-2 Google Scholar
  71. 71.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964).  https://doi.org/10.1007/BF00248490 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Morrison, P.J.: Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 24(5), 055502 (2017).  https://doi.org/10.1063/1.4982054 ADSMathSciNetGoogle Scholar
  73. 73.
    Mukherjee, T., Zhang, W., DebRoy, T.: An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 126, 360–372 (2017).  https://doi.org/10.1016/J.COMMATSCI.2016.10.003 Google Scholar
  74. 74.
    Müller, I.: Zum Paradoxon der Warmeleitungstheorie. Z. Phys. 198, 329–344 (1967).  https://doi.org/10.1007/BF01326412 ADSzbMATHGoogle Scholar
  75. 75.
    Myasnikov, V.P., Guzev, M.A.: Thermomechanical model of elastic-plastic materials with defect structures. Theor. Appl. Fract. Mech. 33(3), 165–171 (2000).  https://doi.org/10.1016/S0167-8442(00)00011-2 Google Scholar
  76. 76.
    Nishikawa, H.: New-generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate viscous/heat fluxes. In: 20th AIAA Computational Fluid Dynamics Conference, Reston, Virgina. American Institute of Aeronautics and Astronautics (2011).  https://doi.org/10.2514/6.2011-3043
  77. 77.
    Nishikawa, H., Liu, Y.: Hyperbolic Navier–Stokes method for high-Reynolds-number boundary layer flows. In: 55th AIAA Aerospace Sciences Meeting (2017).  https://doi.org/10.2514/6.2017-0081
  78. 78.
    Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953).  https://doi.org/10.1016/0001-6160(53)90054-6 Google Scholar
  79. 79.
    Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, London (2005)Google Scholar
  80. 80.
    Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90(6), 1–19 (2014).  https://doi.org/10.1103/PhysRevE.90.062131 Google Scholar
  82. 82.
    Pavelka, M., Klika, V., Grmela, M.: Multiscale Thermo-Dynamics. De Gruyter, Berlin (2018).  https://doi.org/10.1515/9783110350951 zbMATHGoogle Scholar
  83. 83.
    Peshkov, I., Boscheri, W., Loubère, R., Romenski, E., Dumbser, M.: Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity. J. Comput. Phys. (2019).  https://doi.org/10.1016/j.jcp.2019.02.039 MathSciNetGoogle Scholar
  84. 84.
    Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Contin. Mech. Thermodyn. 30(6), 1343–1378 (2018).  https://doi.org/10.1007/s00161-018-0621-2 ADSMathSciNetGoogle Scholar
  85. 85.
    Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28(1–2), 85–104 (2016).  https://doi.org/10.1007/s00161-014-0401-6 ADSMathSciNetzbMATHGoogle Scholar
  86. 86.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  87. 87.
    Rakotomanana, L.R.: Covariance and Gauge Invariance in Continuum Physics, Volume 73 of Progress in Mathematical Physics. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91782-5 zbMATHGoogle Scholar
  88. 88.
    Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  89. 89.
    Romenski, E.I., Sadykov, A.D.: On modeling the frequency transformation effect in elastic waves. J. Appl. Ind. Math. 5(2), 282–289 (2011).  https://doi.org/10.1134/S1990478911020153 Google Scholar
  90. 90.
    Romenskii, E.I.: Dynamic three-dimensional equations of the Rakhmatulin elastic-plastic model. J. Appl. Mech. Techn. Phys. 20(2), 229–244 (1979).  https://doi.org/10.1007/BF00910025 ADSMathSciNetGoogle Scholar
  91. 91.
    Romensky, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115–130 (1998).  https://doi.org/10.1016/S0895-7177(98)00159-9 MathSciNetzbMATHGoogle Scholar
  92. 92.
    Romensky, E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 745–761. Springer, New York (2001).  https://doi.org/10.1007/978-1-4615-0663-8 Google Scholar
  93. 93.
    Rosati, L.: Derivatives and rates of the stretch and rotation tensors. J. Elast. 56(3), 213–230 (1999).  https://doi.org/10.1023/A:1007663620943 MathSciNetzbMATHGoogle Scholar
  94. 94.
    Scholz, E.: Cartan’s attempt at bridge-building between Einstein and the Cosserats|or how translational curvature became to be known as torsion. Eur. Phys. J. H 44(1), 47–75 (2019).  https://doi.org/10.1140/epjh/e2018-90059-x Google Scholar
  95. 95.
    Sedov, L.: Introduction to the Mechanics of a Continuous Medium. Addison-Wesley Publishing Company, Reading (1968)Google Scholar
  96. 96.
    Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994).  https://doi.org/10.1016/0020-7683(94)90164-3 MathSciNetzbMATHGoogle Scholar
  97. 97.
    Stewart, J.M.: On transient relativistic thermodynamics and kinetic theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 357(1688), 59–75 (1977).  https://doi.org/10.1098/rspa.1977.0155 ADSMathSciNetGoogle Scholar
  98. 98.
    Stricker, L., Öttinger, H.C.: Stability analysis for a thermodynamically consistent model of relativistic fluid dynamics. Phys. Rev. E 99(1), 013105 (2019).  https://doi.org/10.1103/PhysRevE.99.013105 ADSGoogle Scholar
  99. 99.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962).  https://doi.org/10.1007/BF00253945 MathSciNetzbMATHGoogle Scholar
  100. 100.
    Tsinober, A.: An Informal Conceptual Introduction to Turbulence, Volume 92 of Fluid Mechanics and Its Applications. Springer, Dordrecht (2009).  https://doi.org/10.1007/978-90-481-3174-7 zbMATHGoogle Scholar
  101. 101.
    Yan, J., Yan, W., Lin, S., Wagner, G.J.: A fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidification. Comput. Methods Appl. Mech. Eng. 336, 444–470 (2018).  https://doi.org/10.1016/j.cma.2018.03.017 ADSMathSciNetGoogle Scholar
  102. 102.
    Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012).  https://doi.org/10.1007/s00205-012-0500-0

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de ToulouseToulouseFrance
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly

Personalised recommendations