Advertisement

The dual formalisms of nonextensive thermodynamics for open systems with maximum entropy principle

  • Yahui Zheng
  • Haining Yu
  • Jiulin DuEmail author
Original Article
  • 13 Downloads

Abstract

We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potential is constant in the two sets of parallel formalisms, where the fundamental thermodynamic equations with dual interpretations of thermodynamic quantities are derived for the open systems. By introducing parallel structures of Legendre transformations, other thermodynamic equations with dual interpretations of quantities are also deduced in the open systems, and then several dual thermodynamic relations are inferred. One can easily find that there are correlations between the dual relations, from which an equivalent rule is found that the Tsallis factor is invariable in calculations of partial derivative with constant volume or constant entropy. Using this rule, more correlations can be found. And the statistical expressions of the Lagrange internal energy and pressure are easily obtained.

Keywords

Nonextensive thermodynamic equation Nonextensive thermodynamic relation Legendre transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Zheng Y. wishes to express thanks to the colleges and friends at Henan Institute of Technology and Xinxiang University in Xinxiang city. The present study was supported by National Natural Science Foundation of China under Grant Nos. 11775156, 11405092.

References

  1. 1.
    Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Du, J.L.: The nonextensive parameter and Tsallis distribution for self-gravitating systems. Europhys. Lett. 67, 893 (2004)CrossRefGoogle Scholar
  3. 3.
    Leubner, M.P.: Nonextensive theory of dark matter and gas density profiles. Astrophys. J. 632, L1 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Du, J.L.: The Chandrasekhar’s condition of the equilibrium and stability for a star in the nonextensive kinetic theory. New Astron. 12, 60 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Du, J.L.: Nonextensivity and the power-law distributions for the systems with self-gravitating long-range interactions. Astrophys. Space Sci. 312, 47 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Zheng, Y., Du, J.: Two physical explanations of the nonextensive parameter in a self-gravitating system. EPL 107, 60001 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Lima, J.A.S., Silva Jr., R., Santos, J.: Plasma oscillations and nonextensive statistics. Phys. Rev. E 61, 3260 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Du, J.L.: Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262 (2004)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, L.Y., Du, J.L.: Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics. Physica A 387, 4821 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Yu, H., Du, J.: The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field. Ann. Phys. 350, 302 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, J.: Transition state theory: a generalization to nonequilibrium systems with power-law distributions. Physica A 391, 1718 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Yin, C., Du, J.: The power-law reaction rate coefficient for an elementary bimolecular reaction. Physica A 395, 416 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Oikonomou, T., Provata, A., Tirnakli, U.: Nonextensive statistical approach to non-coding human DNA. Physica A 387, 2653 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Rolinski, O.J., Martin, A., Birch, D.J.S.: Human serum albuminc-flavonoid interactions monitored by means of tryptophan kinetics. Ann. N. Y. Acad. Sci. 1130, 314 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Eftaxias, K., Minadakis, G., Potirakis, S.M., Balasis, G.: Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics. Physica A 392, 497 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Abe, S., Martınez, S., Pennini, F.: Nonextensive thermodynamic relations. A. Phys. Lett. A 281, 126 (2001)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Toral, R.: On the definition of physical temperature and pressure for nonextensive thermostatistics. Physica A 317, 209 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Abe, S.: Temperature of nonextensive systems: Tsallis entropy as Clausius entropy. Physica A 368(2), 430 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Guo, L.N., Du, J.L.: Thermodynamic potentials and thermodynamic relations in nonextensive thermodynamics. Physica A 390, 183 (2011)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zheng, Y.H., Du, J.L.: Nonextensive thermodynamic relations based on the assumption of temperature duality. Contin. Mech. Thermodyn. 28, 1791 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Curado, E.M.F., Tsallis, C.: Generalized statistical mechanics: connection with thermodynamics. J. Phys. A 24, L69 (1991)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Physica A 261, 534 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Plastino, A.R., Plastino, A.: Tsallis’ entropy, Ehrenfest theorem and information theory. Phys. Lett. A 177, 177 (1993)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, Q.A., Le Méhauté, A.: Unnormalized nonextensive expectation value and zeroth law of thermodynamics. Chaos Solitons Fractals 15, 537 (2003)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Zheng, Y., Du, J., Liang, F.: Thermodynamic stability criterion and fluctuation theory in nonextensive thermodynamics. Contin. Mech. Thermodyn. 30, 629 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceHenan Institute of TechnologyXinxiang CityChina
  2. 2.Shanxi Institute of EnergyJinzhong CityChina
  3. 3.Department of Physics, School of ScienceTianjin UniversityTianjinChina

Personalised recommendations