Stability of elastic cylindrical tube with surface stresses

  • Denis N. SheydakovEmail author
Original Article


In the framework of the Gurtin–Murdoch model, the buckling features are studied for nonlinearly elastic cylindrical tubes with surface stresses under two different types of combined loading. The exact neutral equilibrium equations are derived, and the linearized boundary-value problem is formulated by solving which the stability of these tubes is analyzed. For an aluminum tube, the critical curves were found numerically and the stability regions were constructed in the planes of the corresponding loading parameters. It follows from their analysis that surface stresses can have both stabilizing and negative influence on the buckling of nonlinearly elastic tubes, depending on the type of loading. The degree of this influence is determined by the overall size (scale) of the tube.


Nonlinear elasticity Deformation stability Surface stresses Gurtin–Murdoch model Cylindrical tube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Altenbach, H., Morozov, N.F. (eds.): Surface Effects in Solid Mechanics—Models, Simulations, and Applications. Springer, Berlin (2013)zbMATHGoogle Scholar
  3. 3.
    Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410–5 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Aref, H., Van der Giessen, E. (eds.) Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier, San Diego (2008)Google Scholar
  5. 5.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Green, A.E., Adkins, J.E.: Large Elastic Deformations and Non-linear Continuum Mechanics. Clarendon Press, Oxford (1960)zbMATHGoogle Scholar
  7. 7.
    Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98(7), 074306–074311 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802 (2012)CrossRefGoogle Scholar
  11. 11.
    John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math. 13, 239–296 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lurie, A.I.: Non-linear Theory of Elasticity. North-Holland, Amsterdam (1990)Google Scholar
  13. 13.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Ogden, R.W.: Non-linear Elastic Deformations. Dover, Mineola (1997)Google Scholar
  15. 15.
    Ogden, R.W., Steigmann, D.J., Haughton, D.M.: The effect of elastic surface coating on the finite deformation and bifurcation of a pressurized circular annulus. J. Elast. 47(2), 121–145 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Podio-Guidugli, P., Caffarelli, G.V.: Surface interaction potentials in elasticity. Arch. Ration. Mech. Anal. 109, 345–385 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rubin, M., Benveniste, Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52, 1023–1052 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sheydakov, D.N.: Stability of a rectangular plate under biaxial tension. J. Appl. Mech. Tech. Phys. 48(4), 547–555 (2007)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sheydakov, D.N.: Effect of surface stresses on stability of elastic circular cylinder. In: dell’Isola, F., Eremeyev, V., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol. 87, pp. 343–355. Springer, Cham (2018)CrossRefGoogle Scholar
  20. 20.
    Sheydakov, D.N.: On stability of a nonlinearly elastic rectangular plate with surface stresses. In: Pietraszkiewicz, W., Witkowski, W. (eds.) Shell Structures: Theory and Applications, vol. 4, pp. 271–274. CRC Press, London (2018)Google Scholar
  21. 21.
    Sheydakov, D.N., Altenbach, H.: Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math. Mech. Solids 21(9), 1082–1094 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Šilhavý, M.: A direct approach to nonlinear shells with application to surface-substrate interactions. Math. Mech. Complex Syst. 1, 211–232 (2013)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nanostructured materials. P. R. Soc. Lond. A 462(2069), 1355–1363 (2006)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar
  27. 27.
    Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48(2), 140–150 (2010)CrossRefGoogle Scholar
  28. 28.
    Yengejeh, S.I., Kazemi, S.A., Öchsner, A.: Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: a review. Compos. Part B 86, 95–107 (2016)CrossRefGoogle Scholar
  29. 29.
    Yengejeh, S.I., Kazemi, S.A., Öchsner, A.: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Comput. Mater. Sci. 136, 85–101 (2017)CrossRefGoogle Scholar
  30. 30.
    Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.South Scientific Center of Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations