Advertisement

On invariance properties of an extended energy balance

  • Andreas Prahs
  • Thomas BöhlkeEmail author
Original Article
  • 23 Downloads

Abstract

Gradient plasticity theories are of utmost importance for accounting for size effects in metals, especially on the grain scale. Today, there are several methods used to derive the governing equations for the additional degrees of freedom in gradient plasticity theories. Here, the equivalence between an extended principle of virtual power and an extended energy balance is shown. The energy balance of a Boltzmann continuum is supplemented by contributions based on a scalar-valued degree of freedom. It is considered to be invariant with respect to a change of observer. This yields unambiguously the existence of a corresponding micro-stress vector, which is presumed from the outset in the context of an extended principle of virtual power. A thermodynamically consistent nonlocal evolution equation for the additional, scalar-valued degree of freedom is obtained by evaluation of the dissipation inequality in terms of the Clausius–Duhem inequality. Partitioning the nonlocal flow rule yields a partial differential equation, often referred to as micro-force balance. The approach presented is applied to derive a slip gradient crystal plasticity theory regarding single slip. Finally, the distribution of the plastic slip is exemplified with respect to a laminate material consisting of an elastic and an elastoplastic phase.

Keywords

Extended energy balance Green–Naghdi–Rivlin theorem Additional field equations Micro-stress Conservation of micro-inertia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The support of the German Research Foundation (DFG) in the project ‘Dislocation based Gradient Plasticity Theory’ of the DFG Research Group 1650 ‘Dislocation based Plasticity’ under Grant BO1466/5 is gratefully acknowledged. In addition, discussions with Matti Schneider on the topic are gratefully acknowledged.

References

  1. 1.
    Bardella, L.: Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int. J. Eng. Sci. 48(5), 550–568 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bayerschen, E., Böhlke, T.: Power-law defect energy in a single-crystal gradient plasticity framework: a computational study. Comput. Mech. 58(1), 13–27 (2016)MathSciNetGoogle Scholar
  3. 3.
    Bayerschen, E., Stricker, M., Wulfinghoff, S., Weygand, D., Böhlke, T.: Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc. R. Soc. A 471, 1–19 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beegle, B.L., Modell, M., Reid, R.C.: Legendre transforms and their application in thermodynamics. AIChE J. 20(6), 1194–1200 (1974)MathSciNetGoogle Scholar
  5. 5.
    Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2005)zbMATHGoogle Scholar
  6. 6.
    Bertram, A.: Solid Mechanics: Theory, Modeling, and Problems. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  7. 7.
    Bertram, A., Krawietz, A.: On the introduction of thermoplasticity. Acta Mech. 223(10), 2257–2268 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Capriz, G.: Continua with Microstructure. Springer, New York (1989)zbMATHGoogle Scholar
  9. 9.
    Capriz, G., Podio-Guidugli, P., Williams, W.: On balance equations for materials with affine structure. Meccanica 17(2), 80–84 (1982)zbMATHGoogle Scholar
  10. 10.
    Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39(26), 6281–6309 (2002)zbMATHGoogle Scholar
  11. 11.
    Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)ADSGoogle Scholar
  12. 12.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann, Paris (1909)zbMATHGoogle Scholar
  14. 14.
    dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A 471(2183), 1–25 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. In: Dafermos, C.M., Joseph, D.D., Leslie, F.M. (eds.) The Breadth and Depth of Continuum Mechanics, pp. 705–743. Springer, Berlin (1986)Google Scholar
  17. 17.
    Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5(1), 23–34 (1961)MathSciNetGoogle Scholar
  18. 18.
    Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Eringen, A.C.: Mechanics of Micromorphic Continua. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer, Berlin (1968)Google Scholar
  20. 20.
    Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from Fundamentals of the Mechanics of Continua by E. Hellinger. Z. Angew. Math. Mech. 97(4), 477–506 (2017)MathSciNetGoogle Scholar
  22. 22.
    Eugster, S.R., dell’Isola, F.: Exegesis of Sect. II and III.A from “Fundamentals of the Mechanics of Continua” by E. Hellinger. Z. Angew. Math. Mech. 98(1), 31–68 (2018)MathSciNetGoogle Scholar
  23. 23.
    Eugster, S.R., dell’Isola, F.: Exegesis of Sect. III.B from “Fundamentals of the Mechanics of Continua” by E. Hellinger. Z. Angew. Math. Mech. 98(1), 69–105 (2018)MathSciNetGoogle Scholar
  24. 24.
    Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)Google Scholar
  25. 25.
    Forest, S.: Questioning size effects as predicted by strain gradient plasticity. J. Mech. Behav. Mater. 22(3–4), 101–110 (2013)Google Scholar
  26. 26.
    Forest, S., Guéninchault, N.: Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sin. 29(6), 763–772 (2013)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Fox, N.: A continuum theory of dislocations for polar elastic materials. J. Mech. Appl. Math. 19(3), 343–355 (1966)Google Scholar
  28. 28.
    Fox, N.: On the continuum theories of dislocations and plasticity. J. Mech. Appl. Math. 21(1), 67–75 (1968)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Germain, N., Besson, J., Feyel, F.: Simulation of laminate composites degradation using mesoscopic non-local damage model and non-local layered shell element. Model. Simul. Mater. Sci. Eng. 15(4), 425–434 (2007)ADSGoogle Scholar
  30. 30.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)zbMATHGoogle Scholar
  31. 31.
    Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 1–17 (2016)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Green, A., Naghdi, P., Rivlin, R.: Directors and multipolar displacements in continuum mechanics. Int. J. Eng. Sci. 2(6), 611–620 (1965)zbMATHGoogle Scholar
  33. 33.
    Green, A.E., Rivlin, R.S.: Simple force and stress multipoles. Arch. Ration. Mech. Anal. 16(5), 325–353 (1964)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Green, A.E., Rivlin, R.S.: On Cauchy’s equations of motion. Z. Angew. Math. Phys. 15(3), 290–292 (1964)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Gurtin, M.E., Anand, L., Lele, S.P.: Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55(9), 1853–1878 (2007)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. Encyclopädie der Mathematischen Wissenschaften 4(4), 601–694 (1913)zbMATHGoogle Scholar
  38. 38.
    Krawietz, A.: Materialtheorie. Springer, Berlin (1986)zbMATHGoogle Scholar
  39. 39.
    Krawietz, A.: Classical mechanics recast with Mach’s principle. Technol. Mech. 35(1), 49–59 (2015)Google Scholar
  40. 40.
    Landau, L., Lifshitz, E.: Mechanics. Pergamon Press, Oxford (1969)zbMATHGoogle Scholar
  41. 41.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Mariano, P.M.: Trends and challenges in the mechanics of complex materials: a view. Philos. Trans. R. Soc. A 374(2066), 1–31 (2016)MathSciNetGoogle Scholar
  43. 43.
    Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994)zbMATHGoogle Scholar
  44. 44.
    Maugin, G.A.: The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech. 35(1), 1–70 (1980)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Maugin, G.A.: The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69, 79–86 (2015)Google Scholar
  46. 46.
    Maugin, G.A.: Non-Classical Continuum Mechanics: A Dictionary. Springer, Singapore (2017)zbMATHGoogle Scholar
  47. 47.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Misra, A., Placidi, L., Scerrato, D.: A review of presentations and discussions of the workshop “Computational Mechanics of Generalized Continua and Applications to Materials with Microstructure” that was held in Catania 29–31 October 2015. Math. Mech. Solid 22(9), 1891–1904 (2017)zbMATHGoogle Scholar
  49. 49.
    Müller, I.: Thermodynamics. Pitman, Boston (1985)zbMATHGoogle Scholar
  50. 50.
    Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continu. Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetzbMATHGoogle Scholar
  51. 51.
    Noether, E.: Invariant variation problems. Transp. Theory Stat. Phys. 1(3), 186–207 (1971)ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Peerlings, R., Massart, T., Geers, M.: A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Eng. 193(30), 3403–3417 (2004)ADSzbMATHGoogle Scholar
  54. 54.
    Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continu. Mech. Thermodyn. 28(1), 119–137 (2016)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 1–19 (2018)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 Cisterna di Latina 17–21 March 2014 Generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solid 22(2), 144–157 (2017)zbMATHGoogle Scholar
  57. 57.
    Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69(3), 1–19 (2018)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Planck, M.: A Survey of Physical Theory. Dover, New York (1960)Google Scholar
  60. 60.
    Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319, 1–13 (2011)Google Scholar
  62. 62.
    Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)zbMATHGoogle Scholar
  63. 63.
    Spring, K.W.: Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech. Mach. Theory 21(5), 365–373 (1986)ADSGoogle Scholar
  64. 64.
    Svendsen, B.: On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom. Continu. Mech. Thermodyn. 11(4), 247–262 (1999)ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    Svendsen, B.: Formulation of balance relations and configurational fields for continua with microstructure and moving point defects via invariance. Int. J. Solids Struct. 38(6), 1183–1200 (2001)zbMATHGoogle Scholar
  66. 66.
    Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132(1), 195–207 (1999)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, pp. 226–793. Springer, Berlin (1960)Google Scholar
  70. 70.
    Ubachs, R., Schreurs, P., Geers, M.: A nonlocal diffuse interface model for microstructure evolution of tin-lead solder. J. Mech. Phys. Solids 52(8), 1763–1792 (2004)ADSzbMATHGoogle Scholar
  71. 71.
    Vardoulakis, I.: Cosserat Continuum Mechanics: With Applications to Granular Media. Springer, Cham (2019)Google Scholar
  72. 72.
    Wulfinghoff, S., Bayerschen, E., Böhlke, T.: A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)Google Scholar
  73. 73.
    Wulfinghoff, S., Forest, S., Böhlke, T.: Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015)ADSMathSciNetzbMATHGoogle Scholar
  74. 74.
    Yavari, A., Marsden, J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63(1), 1–42 (2009)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair for Continuum Mechanics, Institute of Engineering MechanicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations