Continuum Mechanics and Thermodynamics

, Volume 31, Issue 6, pp 1627–1644 | Cite as

Dynamical properties of a composite microcracked bar based on a generalized continuum formulation

  • Valeria Settimi
  • Patrizia TrovalusciEmail author
  • Giuseppe Rega
Original Article


The dynamical behavior of a mono-dimensional bar with distributed microcracks is addressed in terms of free and forced wave propagation. The multiscale model, derived from a generalized continuum formulation, accounts for the microstructure by means of a microdisplacement variable, added to the standard macrodisplacement, and of internal parameters representing density and length of microcracks. The influence of coupling between micro- and macrodisplacement overall response on the system is discussed, as well as the effect of the damage parameters on the propagating waves.


Multiscale-multifield models Microcracked media Wave propagation Dispersion features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Italian Ministry of University and Research, P.R.I.N. 2015, Project 2015JW9NJT Advanced mechanical modeling of new materials and structures for the solution of 2020 Horizon challenges, Sapienza Research Unit (Grant B86J16002300001), and by Sapienza University, Grant 2016 (B82F16005920005).


  1. 1.
    Rapaport, D.C., Rapaport, D.C.R.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Suzuki, T., Takeuchi, S., Yoshinaga, H.: Dislocation Dynamics and Plasticity. Springer, Berlin (1991)Google Scholar
  3. 3.
    Beran, M.J., McCoy, J.J.: Mean field variations in a statistical sample of heterogeneous elastic solids. Int. J. Solids Struct. 6(8), 1035–1054 (1970)zbMATHGoogle Scholar
  4. 4.
    Sanchez-Palencia, E., Zaoui, A.: Homogenization Techniques for Composite Media. Lecture Notes in Physics. Springer, Berlin (1987)zbMATHGoogle Scholar
  5. 5.
    Blanc, C., Le Bris, C., Lions, P.L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fago, M., Hayes, R.L., Carter, E.A., Ortiz, M.: Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2005)Google Scholar
  7. 7.
    Sadowski, T., Trovalusci, P.: Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. CISM Courses and Lectures. Springer, Wien (2014)Google Scholar
  8. 8.
    Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)zbMATHGoogle Scholar
  9. 9.
    Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)zbMATHGoogle Scholar
  10. 10.
    Gurtin, M.E.: Configurational Forces as Basis Concept of Continuum Physics. Springer, Berlin (2000)Google Scholar
  11. 11.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)ADSzbMATHGoogle Scholar
  12. 12.
    Altenbach, H., Eremeyev, V.A. (eds.): Generalized Continua from the Theory to Engineering Application. CISM Courses and Lectures. Springer, Berlin (2013)Google Scholar
  13. 13.
    Kunin, I.A.: Elastic Media with Microstructure-I. One-Dimensional Models. Springer, Berlin (1982)zbMATHGoogle Scholar
  14. 14.
    Trovalusci, P.: Molecular approaches for multifield continua: origins and current developments. In: Multiscale Modeling of Complex Materials, pp. 211–278. Springer (2014)Google Scholar
  15. 15.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)zbMATHGoogle Scholar
  16. 16.
    Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325–1357 (2000)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Peerlings, R.H.J., Fleck, N.A.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2, 599–619 (2004)Google Scholar
  18. 18.
    Bacigalupo, A., Gambarotta, L.: Second-order computational homogenization of heterogeneous materials with periodic microstructure. Zeitschrift für Angewandte Mathematik und Mechanik 90(10–11), 565–578 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Trovalusci, P., Masiani, R.: Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 36(14), 2091–2108 (1999)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Forest, S., Pradel, F., Sab, K.: Asymptotic analysis of heterogeneous cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Onck, P.R.: Cosserat modeling of cellular solids. Comptes Rendus Mécanique 330, 717–722 (2002)ADSzbMATHGoogle Scholar
  22. 22.
    Trovalusci, P., Masiani, R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)zbMATHGoogle Scholar
  23. 23.
    Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)Google Scholar
  24. 24.
    Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1(2), 115–135 (2010)MathSciNetGoogle Scholar
  25. 25.
    Trovalusci, P., Pau, A.: Derivation of microstructured continua from lattice systems via principle of virtual works. The case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech. 225(1), 157–177 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)ADSGoogle Scholar
  27. 27.
    Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos B Eng. 128, 164–173 (2017)Google Scholar
  28. 28.
    Trovalusci, P., Augusti, G.: A continuum model with microstructure for materials with flaws and inclusions. Journal de Physique IV Pr8, 383–390 (1998)Google Scholar
  29. 29.
    Sansalone, V., Trovalusci, P., Cleri, F.: Multiscale modelling of materials by a multifield approach: microscopic stress and strain distribution in fiber-matrix composites. Acta Materialia 54(13), 3485–3492 (2006)Google Scholar
  30. 30.
    Sansalone, V., Trovalusci, P.: A numerical investigation of structure-property relations in fibre composite materials. Int. J. Multiscale Comput. Eng. 5(2), 141–152 (2007)Google Scholar
  31. 31.
    Trovalusci, P., Rega, G.: Elastic waves in heterogeneous materials as in multiscale-multifield continua. Proc. Estonian Acad. Sci. Phys. Math. 56(2), 100–107 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Trovalusci, P., Varano, V., Rega, G.: A generalized continuum formulation for composite materials and wave propagation in a microcracked bar. J. Appl. Mech. 77(6), 061002–1/11 (2010)Google Scholar
  33. 33.
    Trovalusci, P., Varano, V.: Multifield continuum simulations for damaged materials: a bar with voids. Int. J. Multiscale Comput. Eng. 9(5), 599–608 (2011)Google Scholar
  34. 34.
    Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11–12), 1981–1990 (2013)Google Scholar
  35. 35.
    Berezovski, A., Yildizdag, M.E., Scerrato, D.: On the wave dispersion in microstructured solids. Continuum Mech. Thermodyn. 1–20 (2018)Google Scholar
  36. 36.
    Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Methods Eng. 54, 331–346 (2002)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Wang, Z.P., Sun, C.T.: Modelling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36, 473–485 (2002)zbMATHGoogle Scholar
  38. 38.
    Sluys, L.J., de Borst, R., Mühlhaus, H.-B.: Wave propagation, localization and dispersion in a gradient-dependent medium. Int. J. Solids Struct. 30, 1153–1171 (1993)zbMATHGoogle Scholar
  39. 39.
    Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur. J. Mech. A Solids 21, 555–572 (2002)ADSzbMATHGoogle Scholar
  40. 40.
    Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vib. 297, 727–742 (2006)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751–3759 (2009)zbMATHGoogle Scholar
  42. 42.
    Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)zbMATHGoogle Scholar
  43. 43.
    Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)ADSzbMATHGoogle Scholar
  44. 44.
    Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)ADSzbMATHGoogle Scholar
  45. 45.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with internal variables. Arch. Appl. Mech. 81, 229–240 (2011)ADSzbMATHGoogle Scholar
  46. 46.
    Bacigalupo, A., Lepidi, M.: Acoustic wave polarization and energy flow in periodic beam lattice materials. Int. J. Solids Struct. 147, 183–203 (2018)Google Scholar
  47. 47.
    Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)zbMATHGoogle Scholar
  48. 48.
    Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. Wave Motion 45(4), 471–480 (2008)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Askes, H., Metrikine, A.V.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2: static and dynamic response. Eur. J. Mech. A Solids 21, 573–588 (2002)ADSzbMATHGoogle Scholar
  50. 50.
    Sansalone, V., Trovalusci, P., Cleri, F.: Multiscale modeling of composite materials by a multifield finite element approach. Int. J. Multiscale Comput. Eng. 3(4), 463–480 (2005)Google Scholar
  51. 51.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mech. Thermodyn. 27(4–5), 551–570 (2015)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Valeria Settimi
    • 1
  • Patrizia Trovalusci
    • 1
    Email author
  • Giuseppe Rega
    • 1
  1. 1.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità degli Studi di Roma La SapienzaRomeItaly

Personalised recommendations