A new thermodynamic model for solid metals under elastic deformations

  • Dalia S. BertoldiEmail author
  • Pablo Ochoa
Original Article


We present a theoretical model of the free Helmholtz energy (F) for solid metals that incorporates three contributions: the elastic part through a local strain description, the vibrational energy within a quasi-harmonic Einstein model with volume-dependent cohesive energy, and the electronic contribution in the free electron gas setting. To get F, we introduce discrete approximations of the Helmholtz energy defined in cubic lattices and show their convergence to F by finite element methods. For homogeneous deformations, the obtained model is applied to derive an equation of state (EOS) which shows a very good agreement with experimental data. Moreover, compared to other known theoretical EOSs, the present model is highly stable under different estimations of its parameters.


Equation of state Solid metals Elastic deformations Thermodynamic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Shanker, J., Dulari, P., Singh, P.: Extreme compression behaviour of equations of state. Phys. B Condens. Matter 404, 4083 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Holzapfel, W., Hartwig, H., Sievers, W.: Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. J. Phys. Chem. Ref. Data 30, 515 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Alfe, D., Vocadlo, L., Price, G., Gillan, M.: Melting curve of materials: theory versus experiments. J. Phys. Condens. Matter 16, 5973 (2004)Google Scholar
  4. 4.
    Dewaele, A., Torrent, M., Loubeyre, P., Mezouar, M.: Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Molodets, A., Golyshev, A., Shakhray, J.: High-pressure high-temperature equations of state of shocked bcc vanadium. J. Phys. Conf. Ser. 774, 012008 (2016)CrossRefGoogle Scholar
  6. 6.
    Holzapfel, W.: Equations of state for solids under strong compression. Cryst. Mater. 216(9), 473 (2001)Google Scholar
  7. 7.
    Kapoor, K., Kumar, A., Dass, N.: A new temperature-dependent equation of state of solids. PRAMANA J. Phys. 82, 549 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Bercegeay, C., Bernard, S.: First-principles equations of state and elastic properties of seven metals. Phys. Rev. B 72, 214101 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Straub, G., Aidun, J., Wills, J., Sanchez-Castro, C., Wallace, D.: Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum. Phys. Rev. B 50, 5055 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. B 71, 809 (1947)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Vinet, P., Smith, J., Ferrante, J., Rose, J.: Temperature effects on the universal equation of state of solids. Phys. Rev. B 35, 1945 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    Banerjea, A., Smith, J.: Origins of the universal binding-energy relation. Phys. Rev. B 37, 6632 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Mie, G.: Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 11, 657 (1903)CrossRefzbMATHGoogle Scholar
  14. 14.
    Grüneisen, M.: Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 12, 257 (1912)CrossRefzbMATHGoogle Scholar
  15. 15.
    Özgen, S., Sonǧur, L., Kara, İ.: Equations of state for amorphous and crystalline nickel by means of molecular dynamics method. Turk. J. Phys. 36(1), 59 (2012)Google Scholar
  16. 16.
    Ono, S.: First-principles molecular dynamics calculations of the equation of state for tantalum. Int. J. Mol. Sci. 10, 4342 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Lee, M.: Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Phys. Rev. B 79(22), 224102 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Ravindran, P., Fast, L., Korzhavyi, P., Johansson, L., Wills, J., Eriksson, O.: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84(9), 4891 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Rose, J., Smith, J., Guinea, F., Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29(6), 2963 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    Balcerzak, T., Szalowski, K., Jaščur, M.: A simple thermodynamic description of the combined Einstein and elastic models. J. Phys. Condens. Matter 22(42), 401 (2010)CrossRefGoogle Scholar
  21. 21.
    Balcerzak, T., Szalowski, K., Jaščur, M.: A self-consistent thermodynamic model of metallic systems. Application for the description of gold. J. Appl. Phys. 116(4), 043508 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Grimvall, G.: Thermophysical Properties of Materials. Elsevier, Amsterdam (1999)Google Scholar
  23. 23.
    Hill, T.: An Introduction to Statistical Thermodynamics. Addison-Wesley Series in Chemistry, Dover (1960)Google Scholar
  24. 24.
    Hudson, J.: Thermodynamics of Materials. Wiley, New York (1996)Google Scholar
  25. 25.
    Bertoldi, D., Miranda, E., Guillermet, A.: Revisiting the thermostatistics of the Grüneisen parameters and applications to quasiharmonic solids. J. Phys. Chem. Solids 75(10), 1147 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Girifalco, L.: Statistical Mechanics of Solids. Oxford University Press, Oxford (2000)Google Scholar
  27. 27.
    Ciarlet, P.: Differential Geometry: Theory and Applications, vol. 8. CAM, San Diego (2008)CrossRefGoogle Scholar
  28. 28.
    Dimitrienko, Y.: Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2004)zbMATHGoogle Scholar
  30. 30.
    Beecroft, R., Sewnson, C.: An experimental equation of state for sodium. J. Phys. Chem. Solids 18(4), 329 (1961)ADSCrossRefGoogle Scholar
  31. 31.
    Takemura, K., Dewaele, A.: Isothermal equation of state for gold with a He-pressure medium. Phys. Rev. B 78(10), 104119 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Hixson, R., Fritz, J.: Shock compression of tungsten and molybdenum. J. Appl. Phys. 71(4), 17 (1992)CrossRefGoogle Scholar
  33. 33.
    Ratanaphan, S., Olmsted, D., Bulatov, V.: Grain boundary energies in body-centered cubic metals. Acta Mater. 88, 346 (2015)CrossRefGoogle Scholar
  34. 34.
    Raju, S., Mohandas, E., Raghunathan, V.: The pressure derivative of bulk modulus of transition metals: an estimation using the method of model potentials and a study of the systematics. J. Phys. Chem. Solids 58(9), 1367 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Bertoldi, D., Ramos, S., Guillermet, A.: Interrelations between EOS parameters and cohesive energy of transition metals: thermostatistical approach, ab initio calculations and analysis of universality features. J. Phys. Chem. Solids 107, 93 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Tari, A.: The Specific Heat of Matter at Low Temperatures. Imperial College, London (2003)CrossRefGoogle Scholar
  37. 37.
    Killean, R., Lisher, E.: The Debye temperatures of the face centred cubic metals. I. X-ray and neutron diffraction results. J. Phys. F Met. Phys. 5, 1107 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    Ciarlet, P.: The Finite Element Method for Elliptic Problems, vol. 40. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Nacional de CuyoMendozaArgentina
  2. 2.Universidad Nacional de Cuyo-CONICETMendozaArgentina

Personalised recommendations