Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens

  • 102 Accesses

  • 8 Citations

Abstract

Recently the exotic properties of pantographic metamaterials have been investigated, and various mathematical models (both discrete and continuous) have been introduced. However, the experimental evidence available up to now concerns only polyamide specimens. In this paper, we use specimens printed using metallic powder. We prove experimentally that the main qualitative and quantitative features of pantographic sheets in planar deformation are independent of the constituting materials, at least when they can be regarded as homogeneous and isotropic at micro-level. Of course, the absolute value of Young’s modulus of constituent material affects the overall reaction force needed to the hard device to impose a given displacement: A first investigation on this effect is also attempted.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2018)

  2. 2.

    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

  3. 3.

    di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Altenbach, H., et al. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 247–274. Springer, Berlin (2018)

  4. 4.

    Laudato, M., Di Cosmo, F.: Euromech 579 arpino 3–8 April 2017: generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers—a review of presentations and discussions. Contin. Mech. Thermodyn. 30(5), 1011–1025 (2018)

  5. 5.

    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

  6. 6.

    Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

  7. 7.

    Alibert, J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

  8. 8.

    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Berlin (2017)

  9. 9.

    Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

  10. 10.

    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016)

  11. 11.

    Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)

  12. 12.

    Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech. A/Solids 71, 292–319 (2018)

  13. 13.

    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

  14. 14.

    dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0689-8

  15. 15.

    Steigmann, D., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

  16. 16.

    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 85 (2016)

  17. 17.

    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66, 3473–3498 (2015)

  18. 18.

    Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 171153 (2017)

  19. 19.

    Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473(2207), 20170636 (2017)

  20. 20.

    Challamel, N., Kocsis, A., Wang, C.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)

  21. 21.

    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)

  22. 22.

    Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 95 (2016)

  23. 23.

    dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2015)

  24. 24.

    Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)

  25. 25.

    Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM J. Appl. Math. Mech. 89(4), 242–256 (2009)

  26. 26.

    Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

  27. 27.

    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

  28. 28.

    Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

  29. 29.

    Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

  30. 30.

    Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

  31. 31.

    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2017)

  32. 32.

    Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

  33. 33.

    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin. Mech. Thermodyn. 30, 1103–1123 (2018)

  34. 34.

    dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int. J. Non-Linear Mech. 80, 200–208 (2016)

  35. 35.

    Berezovski, A., Giorgio, I., Corte, A.D.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

  36. 36.

    Abali, B., Müller, W., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

  37. 37.

    Camar-Eddine, M., Seppecher, P.: Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12(08), 1153–1176 (2002)

  38. 38.

    Camar-Eddine, M., Seppecher, P.: Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170(3), 211–245 (2003)

  39. 39.

    Camar-Eddine, M., Seppecher, P.: Non-local interactions resulting from the homogenization of a linear diffusive medium. C. R. l’Acad. Sci. Ser. I Math. 332(5), 485–490 (2001)

  40. 40.

    Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogeneous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

  41. 41.

    Challamel, N., Kocsis, A., Wang, C.: Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems. Theor. Appl. Mech. 42(4), 223–248 (2015)

  42. 42.

    Esposito, R., Pulvirenti, M.: From particles to fluids. Handb. Math. Fluid Dyn. 3, 1–82 (2004)

  43. 43.

    Pulvirenti, M.: Kinetic limits for stochastic particle systems. In: Probabilistic Models for Nonlinear Partial Differential Equations, pp. 96–126. Springer, Berlin (1996)

  44. 44.

    Sánchez-Palencia, E.: Non-homogeneous media and vibration theory, Lecture notes in physics, vol. 127 (1980)

  45. 45.

    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 5. North-Holland Publishing Company, Amsterdam (1978)

  46. 46.

    Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Super-hydrodynamic limit in interacting particle systems. J. Stat. Phys. 155(5), 867–887 (2014)

  47. 47.

    Carinci, G., De Masi, A., Giardinà, C., Presutti, E.: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–417 (2014)

  48. 48.

    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243–306 (2009)

  49. 49.

    De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161(5), 1037–1058 (2015)

  50. 50.

    De Masi, A., Luckhaus, S., Presutti, E.: Two scales hydrodynamic limit for a model of malignant tumor cells. Ann. l’Inst. Henri Poincare (B) Prob. Stat. 43(3), 257–297 (2007)

  51. 51.

    De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

  52. 52.

    Jia, H., Misra, A., Poorsolhjouy, P., Liu, C.: Optimal structural topology of materials with micro-scale tension–compression asymmetry simulated using granular micromechanics. Mater. Des. 115, 422–432 (2017)

  53. 53.

    Misra, A., Poorsolhjouy, P.: Grain-and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

  54. 54.

    Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). https://doi.org/10.1177/1081286515576821

  55. 55.

    Ravari, M.K., Kadkhodaei, M., Badrossamay, M., Rezaei, R.: Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 88, 154–161 (2014)

  56. 56.

    Ravari, M.K., Esfahani, S.N., Andani, M.T., Kadkhodaei, M., Ghaei, A., Karaca, H., Elahinia, M.: On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures. Smart Mater. Struct. 25(2), 025008 (2016)

  57. 57.

    Ravari, M.K., Kadkhodaei, M.: A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures. J. Mater. Eng. Perform. 24(1), 245–252 (2015)

  58. 58.

    Ravari, M.K., Kadkhodaei, M., Ghaei, A.: A unit cell model for simulating the stress–strain response of porous shape memory alloys. J. Mater. Eng. Perform. 24(10), 4096–4105 (2015)

  59. 59.

    Rezaei, R., Karamooz Ravari, M., Badrossamay, M., Kadkhodaei, M.: Mechanical characterization and finite element modeling of polylactic acid BCC-Z cellular lattice structures fabricated by fused deposition modeling. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(11), 1995–2004 (2017)

  60. 60.

    Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

  61. 61.

    Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. 31(1), 33–45 (2018)

  62. 62.

    Zhang, D.: Entwicklung des selective laser melting (SLM) für Aluminiumwerkstoffe. Shaker, Aachen (2004)

  63. 63.

    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

  64. 64.

    dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2016)

  65. 65.

    Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer, Berlin (2017)

  66. 66.

    Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

  67. 67.

    Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69(3), 56 (2018)

  68. 68.

    Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

  69. 69.

    Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0693-z

  70. 70.

    Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1d continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola, F., Eremeyev, V.A., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures, pp. 43–74. Springer, Berlin (2018)

  71. 71.

    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65(1), 010802 (2013)

  72. 72.

    Javili, A., McBride, A., Steinmann, P., Reddy, B.: A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput. Mech. 54(3), 745–762 (2014)

  73. 73.

    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

  74. 74.

    Javili, A., Dortdivanlioglu, B., Kuhl, E., Linder, C.: Computational aspects of growth-induced instabilities through eigenvalue analysis. Comput. Mech. 56(3), 405–420 (2015)

  75. 75.

    Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 31, 101–132 (2018)

  76. 76.

    Franciosi, P.: A decomposition method for obtaining global mean green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147, 1–19 (2018)

  77. 77.

    Franciosi, P., Lormand, G.: Using the radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4), 585–606 (2004)

  78. 78.

    Franciosi, P., El Omri, A.: Effective properties of fiber and platelet systems and related phase arrangements in n-phase heterogenous media. Mech. Res. Commun. 38(1), 38–44 (2011)

  79. 79.

    Franciosi, P.: The boundary-due terms in the green operator of inclusion patterns from distant to contact and to connected situations using radon transforms: illustration for spheroid alignments in isotropic media. Int. J. Solids Struct. 47(2), 304–319 (2010)

Download references

Acknowledgements

Mario Spagnuolo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska Curie Grant Agreement No. 665850.

Author information

Correspondence to Mario Spagnuolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Angelo, M., Spagnuolo, M., D’Annibale, F. et al. The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Continuum Mech. Thermodyn. 31, 1181–1203 (2019). https://doi.org/10.1007/s00161-019-00757-3

Download citation

Keywords

  • Pantographic structures
  • Additive manufacturing
  • Tomography
  • Generalized continua