Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 6, pp 1795–1803 | Cite as

Surface elasticity effect on diffusional growth of surface defects in strained solids

  • Sergey KostyrkoEmail author
  • Gleb Shuvalov
Original Article

Abstract

This paper presents a theoretical approach that allows to predict the nucleation of surface topological defects under the mechanical loading taking into account the thermodynamic and elastic properties of solid surface as well as its geometrical characteristics. Assuming that the surface atomic layers are thermodynamically unstable under the certain conditions, we obtain the evolution equation describing the kinetics of the relief formation in the case of diffusion mass transport activated by the stress field. The rate of growth of surface defects depends on the field of bulk and surface stresses, which vary with the shape and size of the considered defects. To find the stress state, we use the first-order perturbation solution of a 2D boundary value problem formulated in the terms of the constitutive equations of bulk and surface elasticity. The solution of linearized evolution equation gives the critical values of the ridges size and the initial level of stresses, which stabilize surface profile.

Keywords

Surface diffusion Surface stress Evolution equation Boundary perturbation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asaro, R.J., Tiller, W.A.: Interface morphology development during stress-corrosion cracking: Part I. Via surface diffusion. Metall. Trans. 3, 1789–1796 (1972)CrossRefGoogle Scholar
  3. 3.
    Berrehar, J., et al.: Surface patterns on single-crystal films under uniaxial stress: experimental evidence for the Grinfeld instability. Phys. Rev. B 46, 13487–13495 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Colin, J., Grilhe, J., Junqua, N.: Morphological instabilities of a stressed pore channel. Acta Mater. 45, 3835–3841 (1997)CrossRefGoogle Scholar
  5. 5.
    Cuenot, S., et al.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Duan, H.L., Weissmüller, J., Wang, Y.: Instabilities of core–shell heterostructured cylinders due to diffusions and epitaxy: spheroidization and blossom of nanowires. J. Mech. Phys. Solids 56, 1831–1851 (2008)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eremeev, V.A., Freidin, A.B., Sharipova, L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Dokl. Phys. 48, 359–364 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fartash, A., et al.: Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Phys. Rev. B 44, 13760–13763 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Freund, L.B.: Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion. Int. J. Solids Struct. 28, 911–923 (1995)CrossRefGoogle Scholar
  11. 11.
    Gao, H.: Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741–772 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Grekov, M.A., Kostyrko, S.A.: Surface effects in an elastic solid with nanosized surface asperities. Int. J. Solids Struct. 96, 153–161 (2016)CrossRefGoogle Scholar
  13. 13.
    Grekov, M.A., et al.: A periodic set of edge dislocations in an elastic solid with a planar boundary incorporating surface effects. Eng. Fract. Mech. 186, 423–435 (2017)CrossRefGoogle Scholar
  14. 14.
    Grinfeld, M.: Instability of the equilibrium of a nonhydrostatically stressed body and a melt. Fluid Dyn. 22, 169–173 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Grinfeld, M.A.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, Harlow Essex (1991)Google Scholar
  16. 16.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRefGoogle Scholar
  18. 18.
    Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Kim, J.-H., Vlassak, J.J.: Perturbation analysis of an undulating free surface in a multi-layered structure. Int. J. Solids Struct. 44, 7924–7937 (2007)CrossRefGoogle Scholar
  20. 20.
    Kostyrko, S.A., Altenbach, H., Grekov, M.A.: Stress concentration in ultra-thin film coating with undulated surface profile. In: Papadrakasis, M., Oñate, E., Schrefler, B. (Eds) VII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems 2017, pp. 1183–1192. CIMNE, Barcelona (2017)Google Scholar
  21. 21.
    Kostyrko, S.A., Grekov, M.A., Altenbach, H.: A model of nanosized thin film coating with sinusoidal interface. AIP Conf. Proc. 1959, 070017 (2018)CrossRefGoogle Scholar
  22. 22.
    Kostyrko, S.A., Shuvalov, G.M.: Stability analysis of nanoscale surface patterns in stressed solids. AIP Conf. Proc. 1959, 070016 (2018)CrossRefGoogle Scholar
  23. 23.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Mogilevskaya, S.G., Crouch, S.I., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)ADSCrossRefGoogle Scholar
  26. 26.
    Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963)ADSCrossRefGoogle Scholar
  27. 27.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Dordrecht (1977)CrossRefGoogle Scholar
  28. 28.
    Nazarenko, L., Stolarski, H., Altenbach, H.: Thermo-elastic properties of random composites with unidirectional anisotropic short-fibers and interphases. Eur. J. Mech./A Solids 70, 249–266 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Sekerka, R.F.: Morphological stability. J. Cryst. Growth 3, 71–81 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    Shenoy, V.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Shuvalov, G.M., Kostyrko, S.A.: Surface self-organization in multilayer film coatings. AIP Conf. Proc. 1909, 020196 (2017)CrossRefGoogle Scholar
  32. 32.
    Spencer, B.J., Meiron, D.L.: Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid. Acta Metall. Mater. 42, 3629–3641 (1994)CrossRefGoogle Scholar
  33. 33.
    Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621–625 (1989)CrossRefGoogle Scholar
  34. 34.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Steigmann, D.J., Ogden, R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Torii, R.H., Balibar, S.: Helium crystals under stress: the Grinfeld instability. J. Low Temp. Phys. 89, 391–400 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    Yang, W.H., Srolovitz, D.J.: Cracklike surface instabilities in stressed solids. Phys. Rev. Lett. 71, 1593–1596 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Yeremeyev, V.A., Freidin, A.B., Sharipova, L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71, 61–84 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, X., Schiavone, P.: Surface effects in the deformation of an anisotropic elastic material with nano-sized elliptical hole. Mech. Res. Commun. 52, 57–61 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations