Advertisement

Effects of the microstructure and density profiles on wave propagation across an interface with material properties

  • I. Scala
  • G. RosiEmail author
  • L. Placidi
  • V.-H. Nguyen
  • S. Naili
Original Article
  • 19 Downloads

Abstract

The characterization of the interphase condition between two materials is current in mechanics. In general, its modeling is achieved by considering an interface with only purely elastic properties. In this paper, following previous works, also inertial interface properties are taken into account. For sufficiently low-frequency regime, we investigate two density profiles (affine and quadratic), for the interphase. Moreover, the interface and the interphase are placed between two solids with different characteristics. The first one is non-dispersive, while for the second one three cases are considered: (a) solid without microstructure, i.e., a Cauchy continuum, (b) solid with microstructure characterized by normal dispersion, i.e., a strain gradient continuum, and (c) by anomalous dispersion. The reflection coefficients are plotted for each case. These results are evaluated with respect to a benchmark finite elements simulation of the finite heterogeneous interphase, and the error is discussed. It is shown that the effects of microstructure can be appreciated at higher frequencies and that the proposed model results to be accurate.

Keywords

Density profiles Interface Interphase Reflection coefficient Strain gradient Wave propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the Laboratoire International Associé Coss&Vita for the financial support via “Fédération Francilienne de Mécanique, CNRS FR2609.

References

  1. 1.
    Abd-alla, A.N., Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stress. 40(9), 1079–1092 (2017)CrossRefGoogle Scholar
  2. 2.
    Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69–70, 195–206 (2015)CrossRefGoogle Scholar
  3. 3.
    Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708–734 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309–323 (2001)CrossRefGoogle Scholar
  5. 5.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A/Solids 22(2), 257–265 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berezovski, A., Giorgio, I., Corte, A.D.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bigoni, D., Movchan, A.: Statics and dynamics of structural interfaces in elasticity. Int. J. Solids Struct. 39(19), 4843–4865 (2002)CrossRefGoogle Scholar
  8. 8.
    Bilotta, A., Turco, E.: Elastoplastic analysis of pressure-sensitive materials by an effective three-dimensional mixed finite element. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4), 382–396 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051 (1996)CrossRefGoogle Scholar
  10. 10.
    Brun, M., Guenneau, S., Movchan, A.B., Bigoni, D.: Dynamics of structural interfaces: filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58(9), 1212–1224 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Carcaterra, A., Dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chaboche, J., Girard, R., Schaff, A.: Numerical analysis of composite systems by using interphase/interface models. Comput. Mech. 20(1–2), 3–11 (1997)CrossRefGoogle Scholar
  13. 13.
    Cowin, S.C.: Bone Mechanics Handbook, 2nd edn. CRC Press, Boca Raton (2001)Google Scholar
  14. 14.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Di Nino, S., D’Annibale, F., Luongo, A.: A simple model for damage analysis of a frame-masonry shear-wall system. Int. J. Solids Struct. 129, 119–134 (2017)CrossRefGoogle Scholar
  16. 16.
    Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Georgiadis, H., Vardoulakis, I., Velgaki, E.: Dispersive rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74(1), 17–45 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)CrossRefGoogle Scholar
  20. 20.
    Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9), 1790–1805 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)CrossRefGoogle Scholar
  22. 22.
    Gouin, H.: Interfaces endowed with nonconstant surface energies revisited with the d’Alembert-Lagrange principle. Math. Mech. Complex Syst. 2(1), 23–43 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gu, S., He, Q.-C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids 59(7), 1413–1426 (2011)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Haïat, G., Sasso, M., Naili, S., Matsukawa, M.: Ultrasonic velocity dispersion in bovine cortical bone: an experimental study. J. Acoust. Soc. Am. 124(3), 1811–1821 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Haïat, G., Wang, H.-L., Brunski, J.: Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Ann. Rev. Biomed. Eng. 16, 187–213 (2014)CrossRefGoogle Scholar
  26. 26.
    Hans, S., Boutin, C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)CrossRefGoogle Scholar
  27. 27.
    Jeannin, L., Dormieux, L.: Poroelastic behaviour of granular media with poroelastic interfaces. Mech. Res. Commun. 83, 27–31 (2017)CrossRefGoogle Scholar
  28. 28.
    Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, Y., Waas, A.M., Arruda, E.M.: A closed-form, hierarchical, multi-interphase model for composites–derivation, verification and application to nanocomposites. J. Mech. Phys. Solids 59(1), 43–63 (2011)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, Y., Xu, N., Luo, J.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195(1), 90–116 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Madeo, A., Placidi, L., et al.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3d continua. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(1), 52–71 (2012)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids. (2015).  https://doi.org/10.1177/1081286515576821
  35. 35.
    Niiranen, J., Kiendl, J., Niemi, A.H., Reali, A.: Isogeometric analysis for sixth-order boundary value problems of gradient-elastic kirchhoff plates. Comput. Methods Appl. Mech. Eng. 316, 328–348 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech Solids 19(5), 555–578 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pukánszky, B.: Interfaces and interphases in multicomponent materials: past, present, future. Eur. Polym. J. 41(4), 645–662 (2005)CrossRefGoogle Scholar
  38. 38.
    Rahali, Y., Giorgio, I., Ganghoffer, J., Dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rizzoni, R., Lebon, F.: Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases. Mech. Res. Commun. 51, 39–50 (2013)CrossRefGoogle Scholar
  40. 40.
    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 93(12), 914–927 (2013)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A/Solids 69, 179–191 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosi, G., Placidi, L., Nguyen, V.-H., Naili, S.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43–48 (2017)CrossRefGoogle Scholar
  43. 43.
    Selvadurai, A.P.S.: A mixed boundary value problem in potential theory for a bimaterial porous region: an application in the environmental geosciences. Math. Mech. Complex Syst. 2(2), 109–122 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Turco, E.: A strategy to identify exciting forces acting on structures. Int. J. Numer. Methods Eng. 64(11), 1483–1508 (2005)CrossRefGoogle Scholar
  45. 45.
    Wear, K.A.: Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med. Biol. 26(4), 641–646 (2000)CrossRefGoogle Scholar
  46. 46.
    Yaghoubi, S.T., Balobanov, V., Mousavi, S.M., Niiranen, J.: Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler–Bernoulli and shear-deformable beams. Eur. J. Mech. A/Solids 69, 113–123 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS 61Université Paris-EstCréteil CedexFrance
  2. 2.Faculty of EngineeringInternational Telematic University UninettunoRomeItaly

Personalised recommendations