Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 331–340 | Cite as

A polynomial way to control the decay of solutions for dipolar bodies

  • Marin MarinEmail author
  • Andreas Öchsner
  • Vicentiu Radulescu
Original Article


In our paper, we consider a combination of two sub-cylinders coupled by an interface in a semi-infinite cylinder. Both sub-cylinders are made of dipolar elastic materials. For one of the two sub-cylinders, we will consider the elastostatic problem, and for the other the elastodynamic problem. Thus, the spatial behaviors of the sub-cylinders are of different kind and the question arises whether the evolution of this combination can be controlled. By using a polynomial way, we prove that the decay of solutions for the two problems can be controlled.


Dipolar bodies Elastostatics Elastodynamics Spatial estimates Upper bound Polynomial decay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Flavin, J.N., Knops, R.J.: Some spatial decay estimates in continuum dynamics. J. Elast. 17, 249–264 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Flavin, J.N., Knops, R.J., Payne, L.E.: Energy bounds in dynamical problems for a semi-infinite elastic beam. In: Eason, G., Ogden, R.W. (eds.) Elasticity: Mathematical Methods and Applications, pp. 101–111. Ellis-Horwood, Chichester (1990)Google Scholar
  3. 3.
    Flavin, J.N., Rionero, S.: Qualitative Estimates for Partial Differential Equations. An Introduction. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  4. 4.
    Horgan, C.O., Quintanilla, R.: Spatial decay of transient end effects in functionally graded heat conducting materials. Q. Appl. Math. 59, 529542 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Quintanilla, R.: Spatial estimates for an equation with delay. Z. Angew. Math. Phys. 61(2), 381–388 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Quintanilla, R.: Spatial stability for the quasi-static problem of thermo-elasticity. J. Elast. 76, 93105 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Quintanilla, R., Saccomandi, G.: Quasistatic anti-plane motion in the simplest theory of nonlinear viscoelasticity. Nonlinear Anal. Ser. B Real World Appl. 9, 14991517 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chirita, S.: On the spatial decay estimates in certain time-dependent problems of continuum mechanics. Arch. Mech. 47, 755–771 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Horgan, C.O., Payne, L.E., Wheeler, L.T.: Spatial decay estimates in transient heat conduction. Q. Appl. Math. 42, 119–127 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nunziato, J.W.: On the spatial decay of solutions in the nonlinear theory of heat conduction. J. Math. Anal. Appl. 48, 687–698 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vallée, C., Rădulescu, V., Atchonouglo, K.: New variational principles for solving extended Dirichlet–Neumann problems. J. Elast. 123, 1–18 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 1–8, 158908 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Marin, M., Öchsner, A.: The effect of a dipolar structure on the Holder stability in Green–Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(6), 1365–1374 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marin, M., Agarwal, R.P., Mahmoud, S.R.: Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal. 2013, 1–7 (2013)CrossRefGoogle Scholar
  20. 20.
    Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Abbas, I.A.: A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity. Appl. Math. Comput. 245, 108–115 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Abbas, I.A.: Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J. Mech. Sci. Technol. 28(10), 4193–4198 (2014)CrossRefGoogle Scholar
  23. 23.
    Othman, M.I.A.: State space approach to generalized thermoelasticity plane waves with two relaxation times under the dependence of the modulus of elasticity on reference temperature. Can. J. Phys. 81(12), 1403–1418 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Sharma, J.N., Othman, M.I.A.: Effect of rotation on generalized thermo-viscoelastic Rayleigh–Lamb waves. Int. J. Solids Struct. 44(13), 4243–4255 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Craciun, E.M., Carabineanu, A., Peride, N.: Antiplane interface crack in a pre-stressed fiber-reinforced elastic composite. Comput. Mater. Sci. 43(1), 184–189 (2008)CrossRefGoogle Scholar
  26. 26.
    Sadowski, T., Craciun, E.M., Rabaea, A., Marsavina, L.: Mathematical modeling of three equal collinear cracks in an orthotropic solid. Meccanica 51(2), 329–339 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTransilvania University of BrasovBrasovRomania
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany
  3. 3.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland
  4. 4.Department of MathematicsUniversity of CraiovaCraiovaRomania

Personalised recommendations