Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 3, pp 715–724 | Cite as

Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system

  • S. Vlase
  • M. MarinEmail author
  • A. Öchsner
  • M. L. Scutaru
Original Article
  • 35 Downloads

Abstract

In this study, the motion equations of a one-dimensional finite element having a general three-dimensional motion together the body are established, using the Lagrange’s equations. The problem is important in technical applications of the last decades, characterized by high velocities and high applied loads. This leads to qualitative different mechanical phenomena (high deformations, resonance, stability), mainly due to the Coriolis effects and relative motions.

Keywords

Multi-body system Finite element method Linear elastic elements Lagrange’s equations Three-dimensional motion One-dimensional finite element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    De Falco, D., Pennestri, E., Vita, L.: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)CrossRefGoogle Scholar
  2. 2.
    Deu, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(35), 258–265 (2008)CrossRefGoogle Scholar
  3. 3.
    Erdman, A.G., Sandor, G.N., Oakberg, A.: A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Eng. Ind. ASME Trans. 94(4), 1193–1203 (1972)CrossRefGoogle Scholar
  4. 4.
    Fanghella, P., Galletti, C., Torre, G.: An explicit independent-coordinate formulation for equations of motion of flexible multibody systems. Mech. Mach. Theory 38, 417–437 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gerstmayr, J., Schberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hou, W., Zhang, X.: Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 319(12), 570–592 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Ibrahimbegovic, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khang, N.V.: Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems. Mech. Res. Commun. 38(4), 294–299 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Khulief, Y.A.: On the finite element dynamic analysis of flexible mechanisms. Comput. Methods Appl. Mech. Eng. 97(1), 23–32 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marin, M., Agarwal, R.P., Mahmoud, S.R.: Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal. 2013, 1–7 (2013)CrossRefGoogle Scholar
  11. 11.
    Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 2008, 1–8 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marin, M., Baleanu, D., Vlase, S.: Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381–387 (2017)CrossRefGoogle Scholar
  14. 14.
    Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mayo, J., Dominguez, J.: Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: geometric stiffness. Comput. Struct. 59(6), 1039–1050 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Negrean, I.: Advanced notions in analytical dynamics of systems. Acta Tech. Napoc. Appl. Math. Mech. Eng. 60(4), 491–502 (2017)Google Scholar
  17. 17.
    Negrean, I.: New formulations in analytical dynamics of systems. Acta Tech. Napoc. Appl. Math. Mech. Eng. 60(1), 49–56 (2017)Google Scholar
  18. 18.
    Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195(5051), 6860–6873 (2006)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method. Springer, Singapore (2016)CrossRefGoogle Scholar
  20. 20.
    Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Shi, Y.M., Li, Z.F., Hua, H.X., Fu, Z.F., Liu, T.X.: The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib. 245(5), 785–800 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Simeon, B.: On Lagrange multipliers in flexible multibody dynamic. Comput. Methods Appl. Mech. Eng. 195(50–51), 6993–7005 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sung, C.K.: An experimental study on the nonlinear elastic dynamic response of linkage mechanism. Mech. Mach. Theory 21, 121–133 (1986)CrossRefGoogle Scholar
  24. 24.
    Thompson, B.S., Sung, C.K.: A survey of finite element techniques for mechanism design. Mech. Mach. Theory 21(4), 351–359 (1986)CrossRefGoogle Scholar
  25. 25.
    Vlase, S.: A method of eliminating Lagrangian multipliers from the equations of motion of interconnected mechanical systems. J. Appl. Mech. ASME Trans. 54(1), 235–237 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    Vlase, S.: Elimination of lagrangian multipliers. Mech. Res. Commun. 14(1), 17–22 (1987)CrossRefzbMATHGoogle Scholar
  27. 27.
    Vlase, S.: Finite element analysis of the planar mechanisms: numerical aspects. Appl. Mech. 4, 90–100 (1992)ADSGoogle Scholar
  28. 28.
    Vlase, S.: Dynamical response of a multibody system with flexible element with a general three-dimensional motion. Rom. J. Phys. 57(3–4), 676–693 (2012)Google Scholar
  29. 29.
    Vlase, S., Danasel, C., Scutaru, M.L., Mihalcica, M.: Finite element analysis of two-dimensional linear elastic systems with a plane Rigid motion. Rom. J. Phys. 59(5–6), 476–487 (2014)Google Scholar
  30. 30.
    Zhang, X., Erdman, A.G.: Dynamic responses of flexible linkage mechanisms with visco-elastic constrained layer damping treatment. Comput. Struct. 79(13), 1265–1274 (2001)CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Lu, J., Shen, Y.: Simultaneous optimal structure and control design of flexible linkage mechanism for noise attenuation. J. Sound Vib. 299(45), 1124–1133 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTransilvania University of BrasovBrasovRomania
  2. 2.Department of Mathematics and Computer ScienceTransilvania University of BrasovBrasovRomania
  3. 3.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany

Personalised recommendations