Continuum Mechanics and Thermodynamics

, Volume 31, Issue 3, pp 703–713 | Cite as

Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading

  • Tim FischerEmail author
  • Ewald Werner
  • Sonun Ulan kyzy
  • Oliver Munz
Original Article


To meet the ever-growing demands for the efficient operation of turbomachinery, a minimum clearance between the rotating and the stationary components is of great importance. A lack of controlling this clearance often leads to interface rubbing. As a result, thermo-mechanical loads arise that can critically damage both components. Maintaining operational reliability and high efficiency requires seal systems that can tolerate rubbing. Honeycomb labyrinth seals can fulfill this task. In this contribution, we present a three-dimensional microstructure-based simulation approach considering the periodic unit cell of a polycrystalline Ni-base superalloy (Hastelloy X) honeycomb structure. Different honeycomb geometries are investigated, and various loading conditions are applied to simulate the thermo-mechanical behavior of the honeycomb structure during rubbing. The problem is solved in a finite element framework, and the deformation behavior is described by a crystal plasticity model accounting for microstructure attributes of the material. To calibrate the material model, numerical simulations on a representative volume element discretized with a realistic three-dimensional periodic mesh are carried out. The overall thermo-mechanical response of the honeycomb structure as well as the development of local field quantities is investigated. The study reveals that large contact areas seem to be very critical for the initiation of premature damage of the honeycomb structure.


Honeycombs Crystal plasticity Ni-base superalloy Thermo-mechanical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is part of the research project WE 2351/14–1, funded by the DFG (Deutsche Forschungsgemeinschaft). We thank the Max Planck Institut für Eisenforschung in Düsseldorf for providing the simulation kit DAMASK.


  1. 1.
    Abotula, S., Shukla, A., Chona, R.: Dynamic constitutive behavior of Hastelloy X under thermo-mechanical loads. J. Mater. Sci. 46(14), 4971–4979 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Aghaie-Khafri, M., Golarzi, N.: Dynamic and metadynamic recrystallization of Hastelloy X superalloy. J. Mater. Sci. 43(10), 3717–3724 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Aghaie-Khafri, M., Golarzi, N.: Forming behavior and workability of Hastelloy X superalloy during hot deformation. Mater. Sci. Eng. A 486, 641–647 (2008)CrossRefGoogle Scholar
  4. 4.
    Barba, D., Alabort, E., Garcia-Gonzalez, D., Moverare, J., Reed, R., Jerusalem, A.: A thermodynamically consistent constitutive model for diffusion-assisted plasticity in Ni-based superalloys. Int. J. Plast. 105, 74–98 (2018)CrossRefGoogle Scholar
  5. 5.
    Böhm, H.: A short introduction to basic aspects of continuum micromechanics. ILSB Report, Vienna University of Technology 206 (1998)Google Scholar
  6. 6.
    Canistraro, H.A., Jordan, E.H., Shixiang, S., Favrow, L.H., Reed, F.A.: Elastic constants of single crystal Hastelloy X at elevated temperatures. J. Eng. Mater. Technol. 120(3), 242–247 (1998)CrossRefGoogle Scholar
  7. 7.
    Dassault Systèmes: Abaqus 6.13 Analysis User’s Guide (2013)Google Scholar
  8. 8.
    Dick, T., Cailletaud, G.: Fretting modelling with a crystal plasticity model of Ti6Al4V. Comput. Mater. Sci. 38(1), 113–125 (2006)CrossRefGoogle Scholar
  9. 9.
    Farukh, F., Zhao, L., Jiang, R., Reed, P., Proprentner, D., Shollock, B.: Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity. Comput. Mater. Sci. 111, 395–405 (2016)CrossRefGoogle Scholar
  10. 10.
    Fillafer, A., Krempaszky, C., Werner, E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014)CrossRefGoogle Scholar
  11. 11.
    Frederick, C., Armstrong, P.: A mathematical representation of the multiaxial bauschinger effect. G.E.G.B. Report RD/B/N 731 (1966)Google Scholar
  12. 12.
    Fritzen, F., Böhlke, T., Schnack, E.: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput. Mech. 43, 701–713 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fromm, B.S., Chang, K., McDowell, D.L., Chen, L.Q., Garmestani, H.: Linking phase-field and finite-element modeling for process-structure-property relations of a Ni-base superalloy. Acta Mater. 60, 5984–5999 (2012)CrossRefGoogle Scholar
  14. 14.
    Ghosh, S., Weber, G., Keshavarz, S.: Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech. Res. Commun. 78, 34–46 (2016)CrossRefGoogle Scholar
  15. 15.
    Goh, C.H., McDowell, D.L., Neu, R.W.: Characteristics of plastic deformation field in polycrystalline fretting contacts. Int. J. Fatigue 25(9–11), 1047–1058 (2003)CrossRefGoogle Scholar
  16. 16.
    Goh, C.H., McDowell, D.L., Neu, R.W.: Influence of microstructure in partial-slip fretting contacts based upon two-dimensional crystal plasticity simulations. J. Tribol. 128(4), 735–744 (2006)CrossRefGoogle Scholar
  17. 17.
    Goh, C.H., McDowell, D.L., Neu, R.W.: Plasticity in polycrystalline fretting fatigue contacts. J. Mech. Phys. Solids 54(2), 340–367 (2006)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Goh, C.H., Neu, R.W., McDowell, D.L.: Crystallographic plasticity in fretting of Ti–6AL–4V. Int. J. Plast. 19(10), 1627–1650 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Haynes International, I.: Hastelloy X alloy (UNS N06002). High-temperature alloys (1997)Google Scholar
  20. 20.
    Hennessey, C., Castelluccio, G.M., McDowell, D.L.: Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075–T6. Mater. Sci. Eng. A 687, 241–248 (2017)CrossRefGoogle Scholar
  21. 21.
    Jordan, E.H., Shi, S., Walker, K.P.: The viscoplastic behavior of Hastelloy-X single crystal. Int. J. Plast. 9(1), 119–139 (1993)CrossRefGoogle Scholar
  22. 22.
    Keshavarz, S., Ghosh, S.: Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 61, 6549–6561 (2013)CrossRefGoogle Scholar
  23. 23.
    Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, TU Eindhoven (2002)Google Scholar
  24. 24.
    Kumar, R., Wang, A., McDowell, D.L.: Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys - a computational micromechanics approach. Int. J. Fract. 137, 173–210 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, B., Zhao, L., Tong, J., Christ, H.: Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature. Mater. Sci. Eng. A 527(15), 3581–3587 (2010)CrossRefGoogle Scholar
  26. 26.
    Meier, F.: Influence of the aluminum-microstructure on the damage behavior of integrated circuits. Ph.D. thesis, Technical University of Munich (2017)Google Scholar
  27. 27.
    Meier, F., Schwarz, C., Werner, E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014)CrossRefGoogle Scholar
  28. 28.
    Mohr, D.: Multi-scale finite-strain plasticity model for stable metallic honeycombs incorporating microstructural evolution. Int. J. Plast. 22, 1899–1923 (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Mohr, D., Doyoyo, M.: Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb. Int. J. Solids Struct. 41, 3353–3377 (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Mohr, D., Doyoyo, M.: Large plastic deformation of metallic honeycomb: orthotropic rate-independent constitutive model. Int. J. Solids Struct. 41, 4435–4456 (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Musinski, W.D., McDowell, D.L.: Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components. Int. J. Fatigue 37, 41–53 (2011)CrossRefGoogle Scholar
  32. 32.
    Musinski, W.D., McDowell, D.L.: On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy specimens. Int. J. Mech. Sci. 100, 195–208 (2015)CrossRefGoogle Scholar
  33. 33.
    Nygards, M., Gudmundson, P.: Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel. Comput. Mater. Sci. 24, 513–519 (2002)CrossRefGoogle Scholar
  34. 34.
    Przybyla, C.P., McDowell, D.L.: Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int. J. Plast. 26, 372–394 (26)Google Scholar
  35. 35.
    Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., L.Wong, S., Ma, D., Jia, N., Kok, P., Fujita, N., Ebrahimi, A., Hochrainer, T., Grilli, N., Janssens, K., Stricker, M., Weygand, D., Meier, F., Werner, E., Fabritius, H.O., Nikolov, S., Friak, M., Raabe, D.: Damask - the Düsseldorf advanced material simulation kit for modelling multi-physics crystal plasticity, damage and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci. (in press) (2018)Google Scholar
  37. 37.
    Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: therory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)CrossRefGoogle Scholar
  38. 38.
    Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D., Diehl, M., Raabe, D.: Damask: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)CrossRefGoogle Scholar
  39. 39.
    Rycroft, C.H.: Voro++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041–111 (2009)CrossRefGoogle Scholar
  40. 40.
    Sakthivel, T., Laha, K., Nandagopal, M., Chandravathi, K.S., Parameswaran, P., Selvi, S.P., Mathew, M., Mannan, S.K.: Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X. Mater. Sci. Eng. A 534, 580–587 (2012)CrossRefGoogle Scholar
  41. 41.
    Shahba, A., Ghosh, S.: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int. J. Plast. 87, 48–68 (2016)CrossRefGoogle Scholar
  42. 42.
    Shenoy, M.M., Gordon, A.P., McDowell, D.L., Neu, R.W.: Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. J. Eng. Mater. Technol. 127, 325–336 (2005)CrossRefGoogle Scholar
  43. 43.
    Shi, S., Jordan, E.H., Walker, K.P.: Self-consistent constitutive modeling and testing of polycrystalline Hastelloy-X. Int. J. Solids Struct. 29(21), 2623–2638 (1992)CrossRefGoogle Scholar
  44. 44.
    Song, J.E., McDowell, D.L.: Grain scale crystal plasticity model with slip and microtwinning for a third generation Ni-base disk alloy. Superalloys 2012, 159–166 (2012)CrossRefGoogle Scholar
  45. 45.
    Taxer, T., Schwarz, C., Smarsly, W., Werner, E.: A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-base alloy MAR-M247. Mater. Sci. Eng. A 575, 144–151 (2013)CrossRefGoogle Scholar
  46. 46.
    Varshni, Y.P.: Temperature dependence of the elastic constants. Phys. Rev. B 2(10), 3952–3958 (1970)ADSCrossRefGoogle Scholar
  47. 47.
    Wang, A., McDowell, D.L.: Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int. J. Plast. 21(2), 285–320 (2005)CrossRefzbMATHGoogle Scholar
  48. 48.
    Werner, E., Wesenjak, R., Fillafer, A., Meier, F., Krempaszky, C.: Microstructure-based modelling of multiphase materials and complex structures. Contin. Mech. Thermodyn. 28(5), 1325–1346 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ye, C., Chen, J., Xu, M., Wei, X., Lu, H.: Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction. Mater. Sci. Eng. A 662, 385–394 (2016)CrossRefGoogle Scholar
  50. 50.
    Zhang, M., McDowell, D.L., Neu, R.W.: Microstructure sensitivity of fretting fatigue based on computational crystal plasticity. Tribol. Int. 42, 1286–1296 (2009)CrossRefGoogle Scholar
  51. 51.
    Zhang, M., Neu, R.W., McDowell, D.L.: Microstructure-sensitive modeling: application to fretting contacts. Int. J. Fatigue 31, 1397–1406 (2009)CrossRefGoogle Scholar
  52. 52.
    Zhang, T., Jiang, J., Britton, B., Shollock, B., Dunne, F.: Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue. Proc. Math. Phys. Eng. Sci. 472, 1–25 (2016)Google Scholar
  53. 53.
    Zhang, X., Oskay, C.: Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature. Modell. Simul. Mater. Sci. Eng. 24, 1–27 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Material Science and Mechanics of MaterialsTechnische Universität MünchenGarchingGermany
  2. 2.Metals and AlloysUniversität BayreuthBayreuthGermany
  3. 3.Institute of Thermal TurbomachineryKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations