Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 273–299 | Cite as

Thermodynamically consistent multiscale formulation of a thermo-mechanical problem with phase transformations

  • Diego Said Schicchi
  • Antonio CaggianoEmail author
  • Martin Hunkel
  • Eduardus A. B. Koenders
Original Article


A multiscale framework for thermo-mechanical analysis with phase transformations is proposed in this work. The formulation covers those cases including coupled constitutive equations for simulating thermo-mechanical processes considering phase transformation phenomena. The general case of temperature- and phase-dependent procedures, involving nonlinear plasticity concepts, is considered as main framework in order to formulate the material dissipation at both micro- and macroscopic level of observation. Thermodynamic consistency conditions for computational up/downscaling between micro- and macroscales are presented, with special focus on phase transformation phenomena, for both the mechanical and thermal homogenization. Classical Coleman–Gurtin thermodynamics is employed at the microscale, whereas an extended framework is considered at the macroscale due to the temperature gradient dependency of the macro stress. The multiscale procedure is based on a variational approach largely discussed in the literature. The overall coupled process at both micro- and macroscopic scales, averaging criteria, thermal, mechanical and phase change constitutive expressions, as well as the corresponding homogenization rules, are discussed and derived in detail.


Multiscale Thermodynamics Phase transformation Thermodynamic consistency Coupled thermo-mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Jiang, Q.: On the modeling of thermo-mechanical phase transformations in solids. J. Elast. 32(1), 61–91 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Silva, E.P., Pacheco, P.M.C.L., Savi, M.A.: On the thermo-mechanical coupling in austenite-martensite phase transformation related to the quenching process. Int. J. Solids Struct. 41(3), 1139–1155 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Simencio Otero, R., Canale, L., Said Schicchi, D., Agaliotis, E., Totten, G., Sánchez Sarmiento, G.: Epoxidized soybean oil: evaluation of oxidative stabilization and metal quenching heat transfer performance. J. Mater. Eng. Perform. 22(7), 1937–1944 (2013)CrossRefGoogle Scholar
  4. 4.
    Hazar, S., Alfredsson, B., Lai, J.: Mechanical modeling of coupled plasticity and phase transformation effects in a martensitic high strength bearing steel. Mech. Mater. 117, 41–57 (2018)CrossRefGoogle Scholar
  5. 5.
    Faheem, A., Ranzi, G., Fiorito, F., Lei, C.: A numerical study on the thermal performance of night ventilated hollow core slabs cast with micro-encapsulated pcm concrete. Energy Build. 127, 892–906 (2016)CrossRefGoogle Scholar
  6. 6.
    Niall, D., Kinnane, O., West, R.P., McCormack, S.: Mechanical and thermal evaluation of different types of pcm-concrete composite panels. J. Struct. Integr. Maint. 2(2), 100–108 (2017)CrossRefGoogle Scholar
  7. 7.
    Dehdezi, P.K., Hall, M.R., Dawson, A.R., Casey, S.P.: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int. J. Pavement Eng. 14(5), 449–462 (2013)CrossRefGoogle Scholar
  8. 8.
    Auricchio, F., Petrini, L.: A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int. J. Numer. Methods Eng. 61(6), 807–836 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Savi, M.A., Paiva, A., Baeta-Neves, A.P., Pacheco, P.M.: Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model. J. Intell. Mater. Syst. Struct. 13(5), 261–273 (2002)CrossRefGoogle Scholar
  10. 10.
    Inoue, T.: Metallo-thermo-mechanical coupling in quenching. In: Hashmi, S., Batalha, G.F., Tyne, C.J.V., Yilbas, B. (eds.) Comprehensive Materials Processing, vol. 12, pp. 177–251. Oxford, Elsevier (2014). ISBN: 978-0-08-096533-8CrossRefGoogle Scholar
  11. 11.
    Mackerle, J.: Finite element analysis and simulation of quenching and other heat treatment processes. A bibliography (1976–2001). Comput. Mater. Sci. 27, 313–332 (2003)CrossRefGoogle Scholar
  12. 12.
    Simsir, C.: Modeling and simulation of steel heat treatment: prediction of microstructure, distortion, residual stresses and cracking. In: Totten, G., Dosset, J. (eds.) ASM Handbook 4B: Steel Heat Treating Technologies, pp. 409–466. ASM International, Materials Park (2014)Google Scholar
  13. 13.
    Voller, V., Swenson, J., Paola, C.: An analytical solution for a stefan problem with variable latent heat. Int. J. Heat Mass Transf. 47(24), 5387–5390 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Voller, V.: An implicit enthalpy solution for phase change problems: with application to a binary alloy solidification. Appl. Math. Model. 11(2), 110–116 (1987)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bhattacharya, M., Basak, T., Ayappa, K.: A fixed-grid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region. Int. J. Heat Mass Transf. 45(24), 4881–4898 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Horstemeyer, M.F.: Multiscale modeling: a review. In: Leszczynski, J., Shukla, M.K. (eds.) Practical Aspects of Computational Chemistry: Methods, Concepts and Applications, pp. 87–135. Springer, Dordrecht (2010). ISBN: 978-90-481-2687-3Google Scholar
  17. 17.
    Geers, M.G., Kouznetsova, V.G., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)zbMATHCrossRefGoogle Scholar
  18. 18.
    Özdemir, I., Brekelmans, W., Geers, M.G.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198(3), 602–613 (2008)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Blanco, P.J., Giusti, S.M.: Thermomechanical multiscale constitutive modeling: accounting for microstructural thermal effects. J. Elast. 115(1), 27–46 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Rivarola, F.L., Etse, G., Folino, P.: On thermodynamic consistency of homogenization-based multiscale theories. J. Eng. Mater. Technol. 139(3), 031011 (2017)CrossRefGoogle Scholar
  21. 21.
    Kouznetsova, V., Geers, M.: A multi-scale model of martensitic transformation plasticity. Mech. Mater. 40(8), 641–657 (2008)CrossRefGoogle Scholar
  22. 22.
    Mahnken, R., Schneidt, A., Antretter, T., Ehlenbröker, U., Wolff, M.: Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels. Int. J. Solids Struct. 54, 156–171 (2015)CrossRefGoogle Scholar
  23. 23.
    Coleman, B., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Coleman, B., Mizel, V.: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40(4), 1116–1125 (1964)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    Nguyen, Q.S., Andrieux, S.: The non-local generalized standard approach: a consistent gradient theory. C. R. Mécanique 333(2), 139–145 (2005)zbMATHADSCrossRefGoogle Scholar
  27. 27.
    Kratochvil, J., Dillon Jr., O.: Thermodynamics of elastic-plastic materials as a theory with internal state variables. J. Appl. Phys. 40(8), 3207–3218 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    Schicchi, D., Hunkel, M.: Transformation plasticity and kinetic during bainite transformation on a 22MnB5 steel grade. Materialwiss. Werkstofftech. 47(8), 771–779 (2016)CrossRefGoogle Scholar
  29. 29.
    Said Schicchi, D., Hoffmann, F., Hunkel, M., Lübben, T.: Numerical and experimental investigation of the mesoscale fracture behaviour of quenched steels. Fatigue Fract. Eng. Mater. Struct. 40(4), 556–570 (2017)CrossRefGoogle Scholar
  30. 30.
    Truesdell, C., Toupin, R.: The classical field theories. In: Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, pp. 226–858. Springer (1960)Google Scholar
  31. 31.
    Chaboche, J.L.: Unified cyclic viscoplastic constitutive equations: development, capabilities, and thermodynamic framework. In: Krausz, A.S., Krausz, K. (eds.) Unified Constitutive Laws of Plastic Deformation, Chap. 1, pp. 1–68. Academic Press, Cambridge (1996)Google Scholar
  32. 32.
    Wolff, M., Böhm, M., Helm, D.: Material behavior of steel-modeling of complex phenomena and thermodynamic consistency. Int. J. Plast. 24(5), 746–774 (2008)zbMATHCrossRefGoogle Scholar
  33. 33.
    Bertram, A., Krawietz, A.: On the introduction of thermoplasticity. Acta Mech. 223, 2257–2268 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Nguyen, Q.S.: Gradient thermodynamics and heat equations. C. R. Mécanique 338(6), 321–326 (2010)zbMATHADSCrossRefGoogle Scholar
  35. 35.
    Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge (2013)Google Scholar
  36. 36.
    Dvorkin, E.N., Goldschmit, M.B.: Nonlinear Continua. Springer, New York (2006)zbMATHGoogle Scholar
  37. 37.
    Monteiro, E., Yvonnet, J., He, Q.C.: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput. Mater. Sci. 42(4), 704–712 (2008)CrossRefGoogle Scholar
  38. 38.
    Kamiński, M.: Homogenization of transient heat transfer problems for some composite materials. Int. J. Eng. Sci. 41(1), 1–29 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Terada, K., Kurumatani, M., Ushida, T., Kikuchi, N.: A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput. Mech. 46(2), 269–285 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Özdemir, I., Brekelmans, W., Geers, M.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73(2), 185–204 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ågren, J.: On the classification of phase transformations. Scr. Mater. 46(12), 893–898 (2002)CrossRefGoogle Scholar
  42. 42.
    Said Schicchi, D., Caggiano, A., Lübben, T., Hunkel, M., Hoffmann, F.: On the mesoscale fracture initiation criterion of heterogeneous steels during quenching. Mater. Perform. Charact. 6(1), 80–104 (2017)Google Scholar
  43. 43.
    Said Schicchi, D., Caggiano, A., Benito, S., Hoffmann, H.: Mesoscale fracture of a bearing steel: a discrete crack approach on static and quenching problems. Theor. Appl. Fract. Mech. 90, 154–164 (2017)CrossRefGoogle Scholar
  44. 44.
    Johnson, W., Mehl, R.: Reaction kinetics in process of nucleation and growth. Trans. AIME 135, 416–458 (1939)Google Scholar
  45. 45.
    Avrami, M.: Kinetics of phase change III: granulation, phase change and microstructure. J. Chem. Phys. 9(2), 177–184 (1941)ADSCrossRefGoogle Scholar
  46. 46.
    Koistinen, D.P., Marburger, R.E.: A general equation prescribing extent of austenite-martensite transformation in pure Fe–C alloys and plain carbon steels. Acta Metall. 7, 59–60 (1959)CrossRefGoogle Scholar
  47. 47.
    Poh, L.H., Peerlings, R., Geers, M., Swaddiwudhipong, S.: Homogenization towards a grain-size dependent plasticity theory for single slip. J. Mech. Phys. Solids 61(4), 913–927 (2013)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Oliver, J., Caicedo, M., Roubin, E., Huespe, A.E., Hernández, J.: Continuum approach to computational multiscale modeling of propagating fracture. Comput. Methods Appl. Mech. Eng. 294, 384–427 (2015)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Giusti, S., Novotny, A., de Souza Neto, E., Feijóo, R.: Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Comput. Methods Appl. Mech. Eng. 198(5), 727–739 (2009)ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Sỳkora, J., Šejnoha, M., Šejnoha, J.: Homogenization of coupled heat and moisture transport in masonry structures including interfaces. Appl. Math. Comput. 219(13), 7275–7285 (2013)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Perić, D., de Souza Neto, E., Feijóo, R., Partovi, M., Molina, A.: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int. J. Numer. Methods Eng. 87(1–5), 149–170 (2011)zbMATHCrossRefGoogle Scholar
  52. 52.
    de Souza Neto, E., Feijóo, R.: On the equivalence between spatial and material volume averaging of stress in large strain multi-scale solid constitutive models. Mech. Mater. 40(10), 803–811 (2008)CrossRefGoogle Scholar
  53. 53.
    Grytz, R., Meschke, G.: Consistent micro-macro transitions at large objective strains in curvilinear convective coordinates. Int. J. Numer. Methods Eng. 73(6), 805–824 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    de Souza Neto, E., Feijóo, R.: Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation. LNCC Res. Dev. Rep. 16 (2006)Google Scholar
  55. 55.
    Şimşir, C., Gür, C.H.: A FEM based framework for simulation of thermal treatments: application to steel quenching. Comput. Mater. Sci. 44(2), 588–600 (2008)CrossRefGoogle Scholar
  56. 56.
    Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Mandel, J.: Plasticité classique et viscoplasticité. CISM Lecture Notes. Springer, Udine (1971)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Diego Said Schicchi
    • 1
  • Antonio Caggiano
    • 2
    • 3
    Email author
  • Martin Hunkel
    • 1
  • Eduardus A. B. Koenders
    • 2
  1. 1.Leibniz Institut für Werkstofforientierte Technologien (IWT)BremenGermany
  2. 2.Institut für Werkstoffe im BauwesenTechnische Universität Darmstadt, Franziska-Braun-Straße 3 (vorm. Petersenstr. 12)DarmstadtGermany
  3. 3.INTECIN, Facultad de IngenieríaUniversidad de Buenos Aires and CONICETBuenos AiresArgentina

Personalised recommendations