Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 4, pp 917–941 | Cite as

Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics

  • Adam Janečka
  • Michal Pavelka
Original Article

Abstract

Reformulating constitutive relation in terms of gradient dynamics (being derivative of a dissipation potential) brings additional information on stability, metastability and instability of the dynamics with respect to perturbations of the constitutive relation, called CR-stability. CR-instability is connected to the loss of convexity of the dissipation potential, which makes the Legendre-conjugate dissipation potential multivalued and causes dissipative phase transitions that are not induced by non-convexity of free energy, but by non-convexity of the dissipation potential. CR-stability of the constitutive relation with respect to perturbations is then manifested by constructing evolution equations for the perturbations in a thermodynamically sound way (CR-extension). As a result, interesting experimental observations of behavior of complex fluids under shear flow and supercritical boiling curve can be explained.

Keywords

Gradient dynamics Non-Newtonian fluids Non-convex dissipation potential Legendre transformation Stability Non-equilibrium thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arnold, V.: Sur la géometrie différentielle des groupes de lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asszonyi, C., Fülöp, T., Ván, P.: Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27(6), 971–986 (2015).  https://doi.org/10.1007/s00161-014-0392-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauschke, H., Lucet, Y.: What is a Fenchel conjugate? Not. AMS 59(1), 44–46 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beretta, G.P.: Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle. Phys. Rev. E 90, 042,113 (2014).  https://doi.org/10.1103/PhysRevE.90.042113 CrossRefGoogle Scholar
  5. 5.
    Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity, Solid Mechanics and Its Applications, vol. 243. Springer, Berlin (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 7th edn. Wiley, New York (2011)Google Scholar
  7. 7.
    Boltenhagen, P., Hu, Y., Matthys, E.F., Pine, D.J.: Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 79, 2359–2362 (1997).  https://doi.org/10.1103/PhysRevLett.79.2359 ADSCrossRefGoogle Scholar
  8. 8.
    BulíCek, M., Pokorný, M., Zamponi, N.: Existence analysis for incompressible fluid model of electrically charged chemically reacting and heat conducting mixtures. SIAM J. Math. Anal. C 49(5), 3776–3830 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Callen, H.: Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, New York (1960)zbMATHGoogle Scholar
  10. 10.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Springer, Berlin (2006)zbMATHGoogle Scholar
  11. 11.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation. Springer, Berlin (2007)zbMATHGoogle Scholar
  12. 12.
    Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945).  https://doi.org/10.1103/RevModPhys.17.343 ADSCrossRefGoogle Scholar
  13. 13.
    Chatelier, H.L.: Sur un énoncé général des lois des équilibres chimiques. C. R. Acad. Sci. 99, 786–789 (1884)Google Scholar
  14. 14.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    DiPerna, R., Lions, P.: Global solutions of Boltzmann’s equation and the entropy inequality. Arch. Ration. Mech. Anal. 114, 47–55 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dorst, L., Van den Boomgaard, R.: An analytical theory of mathematical morphology. In: Serra, J., Salembier, P. (eds.) Mathematical Morphology and its Applications to Signal Processing, pp. 245–250. Barcelona (1993)Google Scholar
  17. 17.
    Dorst, L., den Boomgaard, R.V.: Morphological signal processing and the slope transform. Signal Process. 38(1), 79–98 (1994).  https://doi.org/10.1016/0165-1684(94)90058-2. URL http://www.sciencedirect.com/science/article/pii/0165168494900582
  18. 18.
    Drew, T.B., Mueller, A.C.: Boiling. Trans. Am. Inst. Chem. Eng. 33, 449–473 (1937)Google Scholar
  19. 19.
    Fielding, S.M.: Complex dynamics of shear banded flows. Soft Matter 3, 1262–1279 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Fielding, S.M.: Editor’s preface to the special issue: shear banding in complex fluids. J. Rheol. 60(5), 819–820 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Germann, N., Cook, L., Beris, A.: Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions. J. Nonnewton. Fluid Mech. 196, 51–57 (2013)CrossRefGoogle Scholar
  22. 22.
    Grmela, M.: Weakly nonlocal hydrodynamics. Phys. Rev. E 47, 351 (1993)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Grmela, M.: Why generic? J. Nonnewton. Fluid Mech. 165(17–18, SI), 980–986 (2010).  https://doi.org/10.1016/j.jnnfm.2010.01.018 CrossRefzbMATHGoogle Scholar
  24. 24.
    Grmela, M.: Fluctuations in extended mass-action-law dynamics. Physica D 241, 976–986 (2012).  https://doi.org/10.1016/j.physd.2012.02.008 ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Grmela, M.: Externally driven macroscopic systems: Dynamics versus thermodynamics. J. Stat. Phys. 166(2), 282–316 (2017).  https://doi.org/10.1007/s10955-016-1694-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grmela, M., Chinesta, F., Ammar, A.: Mesoscopic tube model of fluids composed of worm-like micelles. Rheol. Acta 49(5), 495–506 (2010).  https://doi.org/10.1007/s00397-009-0428-y CrossRefGoogle Scholar
  27. 27.
    Grmela, M., Jou, D., Casas-Vazquez, J., Bousmina, M., Lebon, G.: Ensemble averaging in turbulence modelling. Phys. Lett. A 330(1–2), 54–64 (2004).  https://doi.org/10.1016/j.physleta.2004.07.043 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Grmela, M., Klika, V., Pavelka, M.: Reductions and extensions in mesoscopic dynamics. Phys. Rev. E 92, 032111 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997).  https://doi.org/10.1103/PhysRevE.56.6620 ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publications, New York (1984)zbMATHGoogle Scholar
  31. 31.
    Hütter, M., Svendsen, B.: Quasi-linear versus potential-based formulations of force-flux relations and the generic for irreversible processes: comparisons and examples. Contin. Mech. Thermodyn. 25(6), 803–816 (2013).  https://doi.org/10.1007/s00161-012-0289-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Janečka, A., Pavelka, M.: Gradient dynamics and entropy production maximization. J. Non Equilib. Thermodyn. 43(1), 1–19 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Johnson, M., Segalman, D.: A model for viscoelastic fluid behavior which allows non-affine deformation. J Non Newton. Fluid Mechv 2, 255–270 (1977)CrossRefzbMATHGoogle Scholar
  34. 34.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer-Verlag, New York (2010)CrossRefzbMATHGoogle Scholar
  35. 35.
    Junker, P., Makowski, J., Hackl, K.: The principle of the minimum of the dissipation potential for non-isothermal processes. Contin. Mech. Thermodyn. 26(3), 259–268 (2014).  https://doi.org/10.1007/s00161-013-0299-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kroeger, M., Huetter, M.: Automated symbolic calculations in nonequilibrium thermodynamics. Comput. Phys. Commun. 181, 2149–2157 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Kubin, L.P., Poirier, J.P.: Relaxation oscillations and stick-slip of materials. Solid State Phenom. 3–4, 473–481 (1988).  https://doi.org/10.4028/www.scientific.net/SSP.3-4.473 Google Scholar
  38. 38.
    Landau, L., Lifschitz, E.: Statistical Physics. No. Pt. 1 in Course of Theoretical Physics. Pergamon Press, Oxford (1969)Google Scholar
  39. 39.
    Le Roux, C., Rajagopal, K.R.: Shear flows of a new class of power-law fluids. Appl. Math. 58(2), 153–177 (2013).  https://doi.org/10.1007/s10492-013-0008-4 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Málek, J., Průša, V., Rajagopal, K.R.: Generalizations of the Navier–Stokes fluid from a new perspective. Int. J. Eng. Sci. 48(12), 1907–1924 (2010).  https://doi.org/10.1016/j.ijengsci.2010.06.013 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Málek, J., Průša, V., Skřivan, T., Süli, E.: Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 30(2), 023,101 (2018).  https://doi.org/10.1063/1.5018172 CrossRefGoogle Scholar
  42. 42.
    Maragos, P.: Slope transforms: theory and application to nonlinear signal processing. IEEE Trans. Signal Process. 43(4), 864–877 (1995).  https://doi.org/10.1109/78.376839 ADSCrossRefGoogle Scholar
  43. 43.
    Matolcsi, T.: Dynamical laws in thermodynamics. Phys. Essays 5(3), 320–327 (1992)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15, 351–382 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Mielke, A., Renger, D.R.M., Peletier, M.A.: A generalization of Onsager’s reciprocity relations to gradient flows with nonlinear mobility. J. Non Equilib. Thermodyn. 41(2), 141–149 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Nukiyama, S.: The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. J. Jpn. Soc. Mech. Eng. 37, 367–374 (1934)Google Scholar
  47. 47.
    Olmsted, P., Radulescu, O., Lu, C.Y.: The Johnson-Segalman model with a diffusion term in cylindrical Couette flow. J. Rheol. 44, 257–275 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Olmsted, P.D.: Perspectives on shear banding in complex fluids. Rheol. Acta 47, 283–300 (2008).  https://doi.org/10.1007/s00397-008-0260-9 CrossRefGoogle Scholar
  49. 49.
    Orr, W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Ir. Acad. Sect. A Math. Phys. Sci. 27, 9–68 (1907)Google Scholar
  50. 50.
    Orr, W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Ir. Acad. Sect. A Math. Phys. Sci. 27, 69–138 (1907)Google Scholar
  51. 51.
    Orszag, S.A.: Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50(4), 689–703 (1971).  https://doi.org/10.1017/S0022112071002842 ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Öttinger, H.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)CrossRefGoogle Scholar
  53. 53.
    Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655 (1997).  https://doi.org/10.1103/PhysRevE.56.6633 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Pavelka, M., Grmela, M.: Braun–Le Chatelier principle in dissipative thermodynamics. Accademia Peloritana dei Pericolanti (2017)Google Scholar
  55. 55.
    Pavelka, M., Klika, V., Esen, O., Grmela, M.: A hierarchy of Poisson brackets. Physica D 335, 54–69 (2016)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90, 062,131 (2014).  https://doi.org/10.1103/PhysRevE.90.062131 CrossRefGoogle Scholar
  57. 57.
    Perlácová, T., Průša, V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non Newton. Fluid Mech. 216, 13–21 (2015).  https://doi.org/10.1016/j.jnnfm.2014.12.006 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Radulescu, O., Olmsted, P.D., Lu, C.Y.D.: Shear banding in reaction–diffusion models. Rheol. Acta 38, 606–613 (1999)CrossRefGoogle Scholar
  59. 59.
    Rajabian, M., Dubois, C., Grmela, M.: Suspensions of semiflexible fibers in polymeric fluids: rheology and thermodynamics. Rheol. Acta 44, 521–535 (2005).  https://doi.org/10.1007/s00397-005-0434-7 CrossRefGoogle Scholar
  60. 60.
    Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003).  https://doi.org/10.1023/A:1026062615145 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Rajagopal, K.R.: On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243–249 (2006).  https://doi.org/10.1017/S0022112005008025 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Rajagopal, K.R., Srinivasa, A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004).  https://doi.org/10.1098/rspa.2002.1111 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Boston (2005)zbMATHGoogle Scholar
  64. 64.
    Sarti, G.C., Marrucci, G.: Thermomechanics of dilute polymer solutions: multiple bead-spring model. Chem. Eng. Sci. 28, 1053–1059 (1973)CrossRefGoogle Scholar
  65. 65.
    Sommerfeld, A.: Ein beitrag zur hydrodynamischen erklärung der turbulenten flüssigkeitbewegungen. In: Atti. del 4. Congr. Inrnat. dei Mat. III, pp. 116–124. Rome (1908)Google Scholar
  66. 66.
    Stosic, Z.V.: On the frontier of boiling curve and beyond design of its origin. In: Mavko, B., Kljenak, I. (eds.) Nuclear Energy for New Europe 2005. Nuclear Society of Slovenia, Bled (2005)Google Scholar
  67. 67.
    Ván, P.: Generic stability of dissipative non-relativistic and relativistic fluids. J. Stat. Mech. Theory Exp. 2009(2), P02054 (2009)CrossRefGoogle Scholar
  68. 68.
    Verhás, J.: Thermodynamics and Rheology. Fluid Mechanics and Its Applications. Springer, Berlin (1997)zbMATHGoogle Scholar
  69. 69.
    Zia, R.K.P., Redish, E.F., McKay, S.R.: Making sense of the Legendre transform. Am. J. Phys. 77(7), 614–622 (2009).  https://doi.org/10.1119/1.3119512 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical Institute, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations