Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 1059–1068 | Cite as

Structural and elastoplastic properties of \(\upbeta \)-\(\hbox {Ga}_{2}\hbox {O}_{3}\) films grown on hybrid SiC/Si substrates

  • A. V. Osipov
  • A. S. Grashchenko
  • S. A. Kukushkin
  • V. I. Nikolaev
  • E. V. Osipova
  • A. I. Pechnikov
  • I. P. Soshnikov
Original Article
  • 29 Downloads

Abstract

Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young’s modulus, linear compressibility, shear modulus, Poisson’s ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

Keywords

Nanoindentation Gallium oxide Silicon carbide Anisotropic elastoplastic properties Epitaxy Ultimate strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Lorenz, M.R., Woods, J.F., Gambino, R.J.: Some electrical properties of the semiconductor \(\beta \)-\(\text{ Ga }_{2}\text{ O }_{3}\). J. Phys. Chem. Solids 28, 403 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    Ogita, M., Saika, N., Nakanishi, Y., Hatanaka, Y.: Design and performance of a simple, room-temperature \(\text{ Ga }_{2}\text{ O }_{3}\) nanowire gas sensor. Appl. Surf. Sci. 142, 188 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Suzuki, R., Nakagomi, S., Kokubun, Y., Arai, N., Ohira, S.: Enhancement of responsivity in solar-blind \(\beta \)-\(\text{ Ga }_{2}\text{ O }_{3}\) photodiodes with an Au Schottky contact fabricated on single crystal substrates by annealing. Appl. Phys. Lett. 94, 222102 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Higashiwaki, M., Sasaki, K., Kamimura, T., Wong, M.H., Krishnamurthy, D., Kuramata, A., Masui, T., Yamakoshi, S.: Depletion-mode \(Ga_{2}O_{3}\) metal-oxide-semiconductor field-effect transistors on \(\beta \)-\(\text{ Ga }_{2}\text{ O }_{3}\) (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., Yamakoshi, S.: Anisotropic thermal conductivity in single crystal \(\beta \)-gallium oxide. J. Cryst. Growth 378, 591 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Gogova, D., Wagner, G., Baldini, M., Schmidbauer, M., Irmscher, R., Schewski, G.Z., Albrecht, M., Fornari, R.: Effect of indium as a surfactant in (\(\text{ Ga }_{1-x}\) \(\text{ In }_{x})_{2}\text{ O }_{3}\) epitaxial growth on \(\text{ Ga }_{2}\text{ O }_{3 }\) by metal organic vapour phase epitaxy. J. Cryst. Growth 401, 665 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Oshima, Y., V’ıllora, E.G., Matsushita, Y., Yamamoto, S., Shimamura, K.: Epitaxial growth of phase-pure \(\varepsilon \)-\(\text{ Ga }_{2}\text{ O }_{3}\) by halide vapor phase epitaxy. J. Appl. Phys. 118, 085301 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Stepanov, S.I., Nikolaev, V.I., Bougrov, V.E., Romanov, A.E.: Gallium oxide: properties and applications. Rev. Adv. Mater. Sci. 44, 63 (2016)Google Scholar
  9. 9.
    Kukushkin, S.A., Nikolaev, V.I., Osipov, A.V., Osipova, E.V., Pechnikov, A.I., Feoktistov, N.A.: Epitaxial gallium oxide on a SiC/Si substrate. Phys. Solid State 58, 1876 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Kukushkin, S.A., Osipov, A.V.: A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles. J. Appl. Phys. 113, 4909 (2013)CrossRefGoogle Scholar
  11. 11.
    dell’Isola, F., Woźniak, C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83(2), 175 (1997)CrossRefGoogle Scholar
  12. 12.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227(1), 29 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Osipov, A.V.: A continuum model for thin-film condensation. J. Phys. D Appl. Phys. 28, 1670 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Osipov, A.V.: Kinetic models of vapor-deposited thin film condensation: stage of liquid-like coalescence. Thin Solid Films 261, 173 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Kezmane, A., Chiaia, B., Kumpyak, O., Maksimov, V., Placidi, L.: Modeling of reinforced concrete slab with yielding supports subject to impact load. Eur. J. Env. Civil Eng. 21, 988 (2017)CrossRefGoogle Scholar
  16. 16.
    Šilhavỳ, M.: A direct approach to nonlinear shells with application to surface-substrate interactions. Math. Mech. Complex Syst. 1(2), 211 (2013)CrossRefMATHGoogle Scholar
  17. 17.
    Fischer-Cripps, A.C.: Nanoindentation. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V.: Nanoindentation and deformation properties of nanoscale silicon carbide films on silicon substrate. Tech. Phys. Lett. 40, 1114 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Grashchenko, A.S., Kukushkin, S.A., Osipov, A.V., Redkov, A.V.: Nanoindentation of GaN/SiC thin films on silicon substrate. J. Phys. Chem. Solid 102, 151 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    Nye, J.F.: Physical Properties of Crystals. Clarendon, Oxford (1985)Google Scholar
  22. 22.
    Lee, J.G.: Computational Materials Science. Taylor & Francis Group, Boca Raton (2017). An Introduction. CRC PressGoogle Scholar
  23. 23.
    Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional non-linear second gradient elasticity. Int. J. Eng. Sci. 108, 34 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Cuomo, M., dell’Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. Part B Eng. 115, 423 (2017)CrossRefGoogle Scholar
  25. 25.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzonin, C., et al.: J. Phys. Cond. Matt 21, 395502 (2009)CrossRefGoogle Scholar
  26. 26.
    Perdew, J.P., Ruzsinszky, G.I., Csonka, O.A., Vydrov, G.E., Scuseria, L.A., Constantin, X., Zhou, K.: Burke: restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Oshima, Y., Ahmadi, E., Badescu, S.C., Wu, V., Speck, J.S.: Composition determination of \(\beta \)-(\(\text{ Al }_{{\rm x}}\text{ Ga }_{1-x})_{2}\text{ O }_{3}\) layers coherently grown on (010) \(\beta \)-\(\text{ Ga }_{2}\text{ O }_{3}\) substrates by high-resolution X-ray diffraction. Appl. Phys. Express 9, 061102 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Gaillac, R., Pullumbi, P., Coudert, F.-X.: ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28, 275201 (2016)CrossRefGoogle Scholar
  29. 29.
    Johnson, K.L.: Contact Mechanics. University Press, Cambridge (2003)Google Scholar
  30. 30.
    Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Therm. 28, 119 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Therm. 28, 119 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Osipov
    • 1
    • 2
    • 3
    • 4
  • A. S. Grashchenko
    • 1
  • S. A. Kukushkin
    • 1
    • 2
    • 3
    • 4
  • V. I. Nikolaev
    • 5
  • E. V. Osipova
    • 1
  • A. I. Pechnikov
    • 5
  • I. P. Soshnikov
    • 4
  1. 1.Institute of Problems of Mechanical EngineeringSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Herzen State Pedagogical University of RussiaSt. PetersburgRussia
  4. 4.Saint Petersburg National Research Academic UniversitySt. PetersburgRussia
  5. 5.“Perfect Crystals” Ltd.St. PetersburgRussia

Personalised recommendations