Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 133–146 | Cite as

Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures

  • Narindra Ranaivomiarana
  • François-Xavier Irisarri
  • Dimitri Bettebghor
  • Boris DesmoratEmail author
Original Article
  • 70 Downloads

Abstract

An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.

Keywords

Topology optimization SIMP Distributed orthotropy Polar method Material design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids 6, 839–878 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Allaire, G.: Conception optimale des structures. Springer, New York (2002)Google Scholar
  4. 4.
    Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Prog. Biomed. 113(1), 80–91 (2014)Google Scholar
  5. 5.
    Arora, J.S., Belegundu, A.D.: Structural optimization by mathematical programming methods. AIAA J. 22(6), 854–856 (1984)ADSGoogle Scholar
  6. 6.
    Bendsœ, M.P.: Optimization of Structural Topology, Shape, and Material. Springer, Berlin, Heidelberg (1995)zbMATHGoogle Scholar
  7. 7.
    Bendsœ, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)Google Scholar
  8. 8.
    Bendsœ, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin, Heidelberg (2004)Google Scholar
  9. 9.
    Berrehili, Y., Marigo, J.-J.: The homogenized behavior of unidirectional fiber-reinforced composite materials in the case of debonded fibers. Math. Mech. Complex Syst. 2(2), 181–207 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bordogna, M. T., Macquart, T., Bettebghor, D., De Breuker, R.: Aeroelastic Optimization of Variable Stiffness Composite Wing with Blending Constraints. American Institute of Aeronautics and Astronautics (2016)Google Scholar
  11. 11.
    Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bourdin, B., Chambolle, A.: The phase-field method in optimal design. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, vol. 137, pp. 207–215. Springer, Dordrecht (2006)Google Scholar
  13. 13.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bruns, T.E.: A reevaluation of the SIMP method with filtering and an alternative formulation for solidvoid topology optimization. Struct. Multidiscip. Optim. 30(6), 428–436 (2005)MathSciNetGoogle Scholar
  15. 15.
    Burger, M., Osher, S.J.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Catapano, A., Desmorat, B., Vannucci, P.: Stiffness and strength optimization of the anisotropy distribution for laminated structures. J. Optim. Theory Appl. 167(1), 118–146 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetGoogle Scholar
  18. 18.
    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 21 (2016).  https://doi.org/10.1115/1.4032206 Google Scholar
  20. 20.
    Desmorat, B.: Structural rigidity optimization with frictionless unilateral contact. Int. J. Solids Struct. 44(3), 1132–1144 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Desmorat, B.: Structural rigidity optimization with an initial design dependent stress field. Application to thermo-elastic stress loads. Eur. J. Mech. A. Solids 37, 150–159 (2013)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fuchs, M.B., Jiny, S., Peleg, N.: The SRV constraint for 0/1 topological design. Struct. Multidiscip. Optim. 30(4), 320–326 (2005)Google Scholar
  24. 24.
    Gersborg-Hansen, A., Bendsœ, M.P., Sigmund, O.: Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31(4), 251–259 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ghiasi, H., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part II: variable stiffness design. Compos. Struct. 93(1), 1–13 (2010)Google Scholar
  26. 26.
    Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos. Struct. 90(1), 1–11 (2009)Google Scholar
  27. 27.
    Giorgio, I., Della Corte, A., dell’Isola, F., Steigmann, D.J.: Buckling modes in pantographic lattices. C. R. Mech. 344(7), 487–501 (2016)Google Scholar
  28. 28.
    Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, volume 11 of Solid Mechanics And Its Applications, vol. 11. Springer, Netherlands (1992)Google Scholar
  29. 29.
    Han, J., Bertram, A., Olschewski, J., Hermann, W., Sockel, H.-G.: Identification of elastic constants of alloys with sheet and fibre textures based on resonance measurements and finite element analysis. Mater. Sci. Eng. A 191(1–2), 105–111 (1995)Google Scholar
  30. 30.
    IJsselmuiden, S. T.: Optimal design of variable stiffness composite structures using lamination parameters. Ph. D. Thesis. Delft University of Technology, Delft, Netherlands (2011)Google Scholar
  31. 31.
    Irisarri, F.-X., Bassir, D.Hm, Carrere, N., Maire, J.-F.: Multiobjective stacking sequence optimization for laminated composite structures. Compos. Sci. Technol. 69(7), 983–990 (2009)Google Scholar
  32. 32.
    Irisarri, F.-X., Peeters, D.M.J., Abdalla, M.: Optimisation of ply drop order in variable stiffness laminates. Compos. Struct. 152, 791–799 (2016)Google Scholar
  33. 33.
    Jia, H., Misra, A., Poorsolhjouy, P., Liu, C.: Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater. Des. 115, 422–432 (2017)Google Scholar
  34. 34.
    Jibawy, A., Julien, C., Desmorat, B., Vincenti, A., Lén’e, F.: Hierarchical structural optimization of laminated plates using polar representation. Int. J. Solids Struct. 48(18), 2576–2584 (2011)Google Scholar
  35. 35.
    Julien, C.: Conception Optimale de l’Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique. Ph.D. thesis, UPMC (2010)Google Scholar
  36. 36.
    Kirsch, U.: Optimum Structural Design: Concepts, Methods, and Applications. McGraw-Hill, New York (1981)Google Scholar
  37. 37.
    Lekszycki, T.: Functional adaptation of bone as an optimal control problem. J. Theor. Appl. Mech. 43(3), 555–574 (2005)Google Scholar
  38. 38.
    Lekszycki, T., Bucci, S., Del Vescovo, D., Turco, E., Rizzi, N.L.: A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 97(5), 515–531 (2017)ADSMathSciNetGoogle Scholar
  39. 39.
    Lund, E.: Buckling topology optimization of laminated multi-material composite shell structures. Compos. Struct. 91(2), 158–167 (1989)Google Scholar
  40. 40.
    Meddaikar, Y.M., Irisarri, F.-X., Abdalla, M.: Laminate optimization of blended composite structures using a modified Shepard’s method and stacking sequence tables. Struct. Multidiscip. Optim. 55(2), 535–546 (2017)Google Scholar
  41. 41.
    Melnik, A.V., Goriely, A.: Dynamic fiber reorientation in a fiber-reinforced hyperelastic material. Math. Mech. Solids 18, 634–648 (2013).  https://doi.org/10.1177/1081286513485773 MathSciNetGoogle Scholar
  42. 42.
    Miki, M., Sugiyamat, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J. 31(5), 921–922 (1993)ADSGoogle Scholar
  43. 43.
    Norato, J.A., Bendsœ, M.P., Haber, R.B., Tortorelli, D.A.: A topological derivative method for topology optimization. Struct. Multidiscip. Optim. 33(4), 375–386 (2007)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Peeters, D., van Baalen, D., Abdallah, M.: Combining topology and lamination parameter optimisation. Struct. Multidiscip. Optim. 52(1), 105–120 (2015)MathSciNetGoogle Scholar
  45. 45.
    Placidi, L., Barchiesi, E., Della Corte, A.: Identification of two-dimensional pantographic structures with a linear D4 orthotropic second gradient elastic model accounting for external bulk double forces. In: Mathematical Modelling in Solid Mechanics (pp. 211–232). Springer, Singapore (2017)Google Scholar
  46. 46.
    Prager, W.: Introduction to Structural Optimization. Springer, Vienna (1972)Google Scholar
  47. 47.
    Rozvany, G.I.N., Bendsoe, M.P., Kirsch, U.: Layout optimization of structures. Appl. Mech. Rev. 48(2), 41 (1995)ADSGoogle Scholar
  48. 48.
    Schittkowski, K.: Software for mathematical programming. In: Schittkowski, K. (ed.) Computational Mathematical Programming, pp. 383–451. Springer, Berlin, Heidelberg (1985)Google Scholar
  49. 49.
    Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Sigmund, O., Maute, K.: Topology optimization approaches: a comparative review. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)MathSciNetGoogle Scholar
  51. 51.
    Sorensen, S.N., Lund, E.: Topology and thickness optimization of laminated composites including manufacturing constraints. Struct. Multidiscip. Optim. 48(2), 249–265 (2013)MathSciNetGoogle Scholar
  52. 52.
    Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22(2), 116–124 (2001)Google Scholar
  53. 53.
    Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–28 (2016)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40(4–6), 437–454 (2005)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Vannucci, P.: A note on the elastic and geometric bounds for composite laminates. J. Elasticity 199–215 (July 2013)Google Scholar
  57. 57.
    Verchery, G.: Les invariants des tenseurs dordre 4 du type de l’élasticité. In: Mechanical behavior of anisotropic solids/comportment Méchanique des Solides Anisotropes (pp. 93–104). Springer (1982)Google Scholar
  58. 58.
    Vincenti, A., Desmorat, B.: Optimal orthotropy for minimum elastic energy by the polar method. J. Elast. 102(1), 55–78 (2011)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Zillober, C.: A globally convergent version of the method of moving asymptotes. Struct. Optim. 6(3), 166–174 (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Narindra Ranaivomiarana
    • 1
  • François-Xavier Irisarri
    • 1
  • Dimitri Bettebghor
    • 1
  • Boris Desmorat
    • 2
    Email author
  1. 1.DMAS, ONERAUniversité Paris SaclayChâtillonFrance
  2. 2.Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190ParisFrance

Personalised recommendations