Visualising elastic anisotropy: theoretical background and computational implementation
- 127 Downloads
Abstract
In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of Young’s modulus and bulk modulus as well as plane representations of shear modulus and Poisson’s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.
Keywords
Linear elasticity Anisotropy Visualisation MATLABPreview
Unable to display preview. Download preview PDF.
References
- 1.Weng, Y., Dong, H., Dong, H., Gan, Y. (eds.): Advanced Steels. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17665-4 Google Scholar
- 2.Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-08589-9 CrossRefGoogle Scholar
- 3.Langston, L.: Each blade a single crystal. Am. Sci. 103(1), 30 (2015). https://doi.org/10.1511/2015.112.30 CrossRefGoogle Scholar
- 4.Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 3rd edn. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-47070-1 CrossRefzbMATHGoogle Scholar
- 5.Lai, W., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics, 4th edn. Butterworth-Heinemann, Oxford (2009)zbMATHGoogle Scholar
- 6.Skrzypek, J.J., Ganczarski, A.W. (eds.): Mechanics of Anisotropic Materials. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-17160-9_1 zbMATHGoogle Scholar
- 7.Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24615-9 CrossRefzbMATHGoogle Scholar
- 8.Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)zbMATHGoogle Scholar
- 9.Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Vieweg+Teubner Verlag, Berlin (1928). https://doi.org/10.1007/978-3-663-15884-4 zbMATHGoogle Scholar
- 10.Fedorov, F.I.: Theory of Elastic Waves in Crystals. Plenum Press, New York (1968). https://doi.org/10.1007/978-1-4757-1275-9 CrossRefGoogle Scholar
- 11.Cowin, S.C.: Properties of the anisotropic elasticity tensor. Quart. J. Mech. Appl. Math. 42(2), 249–266 (1989). https://doi.org/10.1093/qjmam/42.2.249 MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Coleman, B.D., Noll, W.: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Ration. Mech. Anal. 15(2), 87–111 (1964). https://doi.org/10.1007/BF00249520 MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Ting, T.C.T.: Generalized Cowin–Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40(25), 7129–7142 (2003). https://doi.org/10.1016/S0020-7683(03)00358-5 MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}^{\star }=\lambda ({{\rm tr}}\varvec {D})\varvec {I} + 2\mu \varvec {D}\) and its significance to finite inelasticity. Acta Mech. 138(1), 31–50 (1999). https://doi.org/10.1007/BF01179540 CrossRefGoogle Scholar
- 15.Weyl, H.: The Classical Groups: Their Invariants and Representations, 2nd edn. Princeton University Press, Princeton (1997). 15. print and 1. paperback printzbMATHGoogle Scholar
- 16.Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
- 17.Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-26455-2 CrossRefGoogle Scholar
- 18.Böhlke, T., Brüggemann, C.: Graphical representation of the generalized Hooke‘s law, Technische Mechanik 21(2):145–158 (2001). http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2001_Heft2/Boehlke_Brueggeman.pdf. Accessed 7 Dec 2017
- 19.Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149–171 (1995)MathSciNetzbMATHGoogle Scholar
- 20.He, Q.-C., Curnier, A.: A more fundamental approach to damaged elastic stress–strain relations. Int. J. Solids Struct. 32(10), 1433–1457 (1995). https://doi.org/10.1016/0020-7683(94)00183-W MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Reuss, A.: Berechnung der Fliegrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 9(1), 49–58 (1929). https://doi.org/10.1002/zamm.19290090104 zbMATHGoogle Scholar
- 22.Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307 ADSCrossRefGoogle Scholar
- 23.Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 43(1), 15–41 (1990). https://doi.org/10.1093/qjmam/43.1.15 MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Mandel, J.: Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 1, 3–30 (1962)Google Scholar
- 25.Thomson, W.: Mathematical theory of elasticity: elasticity. Encycl. Br. 7, 819–825 (1878)Google Scholar
- 26.Sutcliffe, S.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. 59(4), 762–773 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 27.Golub, G.H., Loan, C.F.V.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar
- 28.Marmier, A., Lethbridge, Z.A., Walton, R.I., Smith, C.W., Parker, S.C., Evans, K.E.: ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 181(12), 2102–2115 (2010). https://doi.org/10.1016/j.cpc.2010.08.033 ADSCrossRefzbMATHGoogle Scholar
- 29.Gaillac, R., Pullumbi, P., Coudert, F.-X.: ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28(27), 275201 (2016). https://doi.org/10.1088/0953-8984/28/27/275201 CrossRefGoogle Scholar
- 30.dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009). https://doi.org/10.1098/rspa.2008.0530 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 31.Auffray, N., Quang, H.L., He, Q.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013). https://doi.org/10.1016/j.jmps.2013.01.003 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 32.Aßmus, M., Nordmann, J., Naumenko, K., Altenbach, H.: A homogeneous substitute material for the core layer of photovoltaic composite structures. Compos. Part B Eng. 112, 353–372 (2017). https://doi.org/10.1016/j.compositesb.2016.12.042 CrossRefGoogle Scholar