Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 1–31 | Cite as

A mechano-biological model of multi-tissue evolution in bone

  • Jamie FrameEmail author
  • Pierre-Yves Rohan
  • Laurent Corté
  • Rachele Allena
Original Article

Abstract

Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading cases and cartilage was shown to lead to the formation of bone in a beam replicating a fracture healing initial tissue distribution. This finding is encouraging in that it is corroborated by similar experimental observations of cartilage leading bone formation during the fracture healing process. The results of this work demonstrate that a multi-tissue mechano-biological model of tissue evolution has the potential for predictive analysis in the design and implementations of implants, describing fracture healing and bone remodeling processes.

Keywords

Mechano-biological coupling Tissue differentiation Finite element Bone remodeling Bone healing Osseointegration 

List of symbols

\(\varphi _\mathrm{TOT} \)

Total volume fraction

\(\varphi _{i,\mathrm{TOT}} \)

Total volume fraction of bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varphi _V \)

Total volume fraction of free space

\(\varphi _i^I \)

Volume fraction of immature bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varphi _i^M \)

Volume fraction of mature bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varepsilon _I \)

First principal strain

\(\varepsilon _{II} \)

Second principal strain

\(\varepsilon _Y \)

Yield strain

\(\varepsilon _{k,N} \)

Normalized principal strain where \(k=I or II\).

\(f_{i,k} \left( {\varepsilon _{k,N} } \right) \)

Function relating the normalized principal strain with the rate of change of the activation time \(t_{\mathrm{act},i}\), where \(i=B, C or F\) and \(k=I or II\).

\(a_{i,k}^\varepsilon ,b_{i,k}^\varepsilon \)

and k\(c_{i,k}^\varepsilon \) Characteristic coefficients which define \(f_{i,k} \left( {\varepsilon _{k,N} } \right) \) where \(i=B, C or F\) and \(k=I or II\).

\(t_{\mathrm{act},i} \)

Activation time for each tissue, where \(i=B,C or F\)

\(t_\mathrm{act}^\mathrm{Bound} \)

Gaussian distribution used to limit the growth of the activation time

e.

Euler‘s number

\(p^\mathrm{Bound}, q^\mathrm{Bound}\) and \(r^\mathrm{Bound}\)

Coefficients used to define \(t_\mathrm{act}^\mathrm{Bound}\)

t

time

D

Diffusion tensor

\(\Delta \)

Laplacian

I

Identity matrix

\(\lambda _i \) and \(\varPhi _i \)

Diffusion rate coefficients, where \(i=B, C or F\)

\(\alpha _i\)

Immature tissue growth rate, where \(i=B,C or F\)

\(\beta _i\)

Tissue resorption rate, where \(i=B,C or F\)

\(\gamma _i \)

Tissue maturation rate, where \(i=B,C or F\)

\(T_i^G\)

Immature tissue growth function

\(T_i^R\)

Tissue resorption function

\(T_i^M \)

Immature to mature tissue maturation function

\(\theta _I\;\hbox {and}\;\theta _{II} \)

Direction of the principal stresses

\(\otimes \)

Tensor product

\(T_i\)

Effective range of \(t_{\mathrm{act},i} \), where \(i=B,C or F\).

\(T_i^\mathrm{Min}\) and \(T_i^\mathrm{Max} \)

The maximum and minimum values of \(T_i ,\) where \(i=B,C or F\).

\(T_{i,\mathrm{GT}}\)

Coefficient used to scale \(T_{i}^G\) where \(i=B,C or F\)

\(k_i^R , \quad l_i^R \) and \( m_i^R \)

Coefficient used to define \(T_{i}^R\) where \(i=B,C or F\)

\( d_i^M ,\)\(e_i^M \) and \(f_i^M \)

Coefficient used to define \(T_{i}^M\) where \(i=B,C or F\)

\(E_\mathrm{TOT} \)

Material Young’s modulus

\(E_i^I\)

Young’s modulus of immature tissues, where \(i=B,C or F\)

\(E_i^M\)

Young’s modulus of mature tissues, where \(i=B,C or F\)

\(E_V \)

Young’s modulus of the free space

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkus, O., Polyakova-Akkus, A., Adar, F., Schaffler, M.B.: Aging of microstructural compartments in human compact bone. J Bone Miner. Res. 18(6), 1012–1019 (2003).  https://doi.org/10.1359/jbmr.2003.18.6.1012 Google Scholar
  2. 2.
    Avval, P.T., Bougherara, H.: Predicting bone remodeling in response to total hip arthroplasty?: Computational study using mechanobiochemical model. J. Biomech. Eng. 136(5), 1–12 (2017).  https://doi.org/10.1115/1.4026642 Google Scholar
  3. 3.
    Bala, Y., Depalle, B., Douillard, T., Meille, S., Clément, P., Follet, H., Boivin, G.: Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J. Mech. Behav. Biomed. Mater. 4(7), 1473–82 (2011).  https://doi.org/10.1016/j.jmbbm.2011.05.017 Google Scholar
  4. 4.
    Bala, Y., Farlay, D., Delmas, P.D., Meunier, P.J., Boivin, G.: Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46(4), 1204–1212 (2010).  https://doi.org/10.1016/j.bone.2009.11.032 Google Scholar
  5. 5.
    Bandeiras, C., Completo, A.: A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech. Model. Mechanobiol. 16(2), 1–16 (2016).  https://doi.org/10.1007/s10237-016-0843-9 Google Scholar
  6. 6.
    Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue 37, 27–35 (2004).  https://doi.org/10.1016/S0021-9290(03)00257-4
  7. 7.
    Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling—application: a preliminary remodeling simulation. J. Orthop. Res. 8(5), 662–670 (1990)Google Scholar
  8. 8.
    Bousson, V., Meunier, A., Bergot, C., Vicaut, E., Rocha, M.A., Morais, M.H., Laredo, J.D.: Distribution of intracortical porosity in human midfemoral cortex by age and gender. J. Bone Miner. Res. 16(7), 1308–1317 (2001).  https://doi.org/10.1359/jbmr.2001.16.7.1308 Google Scholar
  9. 9.
    Burr, D.B., Martin, R.B.: Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186(2), 186–216 (1989).  https://doi.org/10.1002/aja.1001860208 Google Scholar
  10. 10.
    Burstein, A. H., Zika, J. M., Heiple, K. G., & Klein, L.: (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. Journal of JBone and Joint Surgery Google Scholar
  11. 11.
    Byrne, D.P., Lacroix, D., Prendergast, P.J.: Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach. J. Orthop. Res. 29(10), 1496–1503 (2011).  https://doi.org/10.1002/jor.21362 Google Scholar
  12. 12.
    Cardoso, L., Herman, B.C., Verborgt, O., Laudier, D., Majeska, R.J., Schaffler, M.B.: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J. Bone Miner. Res. 24(4), 597–605 (2009).  https://doi.org/10.1359/jbmr.081210 Google Scholar
  13. 13.
    Carter, D.R., Beaupré, G.S., Giori, N.J., Helms, J.A.: Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355, 41–55 (1998)Google Scholar
  14. 14.
    Carter, D.R., Blenman, P.R., Beaupre, G.S.: Correlations between mechanical-stress history and tissue differentiation in initial fracture-healing. J. Orthop. Res. 6(5), 736–748 (1988)Google Scholar
  15. 15.
    Carter, D.R., Wong, M.: Modelling cartilage mechanobiology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1437), 1461–1471 (2003).  https://doi.org/10.1098/rstb.2003.1346 Google Scholar
  16. 16.
    Checa, S., Prendergast, P.J., Duda, G.N.: Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J. Biomech. 44(7), 1237–1245 (2011).  https://doi.org/10.1016/j.jbiomech.2011.02.074 Google Scholar
  17. 17.
    Chen, J., Rungsiyakull, C., Li, W., Chen, Y., Swain, M., Li, Q.: Multiscale design of surface morphological gradient for osseointegration. J. Mech. Behav. Biomed. Mater. 20, 387–397 (2013).  https://doi.org/10.1016/j.jmbbm.2012.08.019 Google Scholar
  18. 18.
    Christen, P., Ito, K., Ellouz, R., Boutroy, S., Sornay-Rendu, E., Chapurlat, R.D., van Rietbergen, B.: Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5, 4855 (2014).  https://doi.org/10.1038/ncomms5855 Google Scholar
  19. 19.
    Claes, L., Augat, P., Suger, G., Wilke, H.J.: Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15(4), 577–584 (1997).  https://doi.org/10.1002/jor.1100150414 Google Scholar
  20. 20.
    Claes, L., Heigele, C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999).  https://doi.org/10.1016/S0021-9290(98)00153-5 Google Scholar
  21. 21.
    Currey, J.D.: The Mechanical Adaptations of Bones. Princeton University Press, Princeton (1984)Google Scholar
  22. 22.
    Currey, J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21(2), 131–139 (1988).  https://doi.org/10.1016/0021-9290(88)90006-1 Google Scholar
  23. 23.
    Dabirrahmani, D., Hogg, M., Kohan, L., Gillies, M.: Primary and long-term stability of a short-stem hip implant. In: Proceedings of the Institution of Mechanical Engineers, vol. 224 no 9, (2010)Google Scholar
  24. 24.
    Doblaré, M., García-Aznar, J.M.: On numerical modelling of growth, differentiation and damage in structural living tissues. Arch. Comput. Methods Eng. 13(4), 471–513 (2006).  https://doi.org/10.1007/BF02905856 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Doblaré, M., García, J.M.: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34(9), 1157–1170 (2001).  https://doi.org/10.1016/S0021-9290(01)00069-0 Google Scholar
  26. 26.
    Doblaré, M., García, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35(1), 1–17 (2002).  https://doi.org/10.1016/S0021-9290(01)00178-6 Google Scholar
  27. 27.
    Doblaré, M., Garcia, J.M., Gomez, M.J.: Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71(13–14), 1809–1840 (2004).  https://doi.org/10.1016/j.engfracmech.2003.08.003 Google Scholar
  28. 28.
    Donaldson, C.L., Hulley, S.B., Vogel, J.M., Hattner, R.S., Bayers, J.H., Mcmillan, D.E.: Effect of prolonged bed rest on bone mineral. Metabolism 19(12), 1071–1084 (1970).  https://doi.org/10.1016/0026-0495(70)90032-6 Google Scholar
  29. 29.
    Edwards, J., Schulze, E., Sabokbar, A., Gordon-Andrews, H., Jackson, D., Athanasou, N.A.: Absence of lymphatics at the bone-implant interface—implications for periprosthetic osteolysis. Acta Orthop. 79(2), 289–294 (2008).  https://doi.org/10.1080/17453670710015175 Google Scholar
  30. 30.
    Freutel, M., Schmidt, H., Durselen, L., Ignatius, A., Galbusera, F.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29(4), 363–372 (2014).  https://doi.org/10.1016/j.clinbiomech.2014.01.006 Google Scholar
  31. 31.
    Frost, H.M.: The Physiology of Cartilaginous Fibrous, and Bony Tissue. Charles C Thomas, Springfield (1972)Google Scholar
  32. 32.
    Frost, H.M.: Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif. Tissue Int. 42(3), 145–156 (1988).  https://doi.org/10.1007/BF02556327 Google Scholar
  33. 33.
    Frost, H.M.: Perspectives: a proposed general model of the "mechanostat" (suggestions from a new skeletal-biologic paradigm). Anat. Rec. 244(2), 139–147 (1996).  https://doi.org/10.1002/(SICI)1097-0185(199602)244:2%3c139::AID-AR1%3e3.0.CO;2-X Google Scholar
  34. 34.
    Gao, J., Williams, J.L., Roan, E.: Multiscale modeling of growth plate cartilage mechanobiology. Biomech. Model. Mechanobiol (2016).  https://doi.org/10.1007/s10237-016-0844-8 Google Scholar
  35. 35.
    García-Aznar, J.M., Kuiper, J.H., Gómez-Benito, M.J., Doblaré, M., Richardson, J.B.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40(7), 1467–1476 (2007).  https://doi.org/10.1016/j.jbiomech.2006.06.013 Google Scholar
  36. 36.
    Garijo, N., Fernández, J.R., Pérez, M.A., García-aznar, J.M.: Numerical stability and convergence analysis of bone remodeling model. Comput. Methods Appl. Mech. Eng. 271, 253–268 (2014).  https://doi.org/10.1016/j.cma.2013.12.014 ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017).  https://doi.org/10.1016/j.eml.2017.02.008 Google Scholar
  38. 38.
    Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9), 1790–1805 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016).  https://doi.org/10.1007/s10237-016-0765-6 Google Scholar
  41. 41.
    Gomez-Benito, M.J., Garcia-Aznar, J.M., Kuiper, J.H., Doblaré, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235(1), 105–119 (2005).  https://doi.org/10.1016/j.jtbi.2004.12.023 MathSciNetGoogle Scholar
  42. 42.
    Gundle, R., Joyner, C.J., Triffitt, J.T.: Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16(6), 597–601 (1995).  https://doi.org/10.1016/8756-3282(95)00112-Q Google Scholar
  43. 43.
    Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D.: The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 11–18 (2008).  https://doi.org/10.1115/1.2838032 Google Scholar
  44. 44.
    Huiskes, R., Ruimerman, R., van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000).  https://doi.org/10.1038/35015116 ADSGoogle Scholar
  45. 45.
    Huiskes, R., Van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. Mater. Med. 8(12), 785–788 (1997).  https://doi.org/10.1023/A:1018520914512 Google Scholar
  46. 46.
    Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11–12), 1135–1150 (1987).  https://doi.org/10.1016/0021-9290(87)90030-3 Google Scholar
  47. 47.
    Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. Anticancer Res. 24(5), 898–907 (2006).  https://doi.org/10.1002/jor Google Scholar
  48. 48.
    Isaksson, H., Gröngröft, I., Wilson, W., Van Donkelaar, C.C., Ven Rietbergen, B., Tami, A., Ito, K.: Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theory. J. Orthop. Res. 27(5), 664–672 (2009).  https://doi.org/10.1002/jor.20725 Google Scholar
  49. 49.
    Jones, L.C., Frondoza, C., Hungerford, D.S.: Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J. Biomed. Mater. Res. 48(6), 889–898 (1999).  https://doi.org/10.1002/(SICI)1097-4636(1999) 48:6%3c889::AID-JBM19%3e3.0.CO;2-S Google Scholar
  50. 50.
    Joos, U., Büchter, A., Wiesmann, H.-P., Meyer, U.: Strain driven fast osseointegration of implants. Head Face Med. 1, 6 (2005).  https://doi.org/10.1186/1746-160X-1-6 Google Scholar
  51. 51.
    Kalfas, I.H.: Principles of bone healing. Neurosurg. Focus 10(4), 1–4 (2001)Google Scholar
  52. 52.
    Klika, V., Angelés, M., García-Aznar, M.J., Maršík, F., Doblaré, M.: A coupled mechano-biochemical model for bone adaptation. Math. Biol. 69, 1383–1429 (2014).  https://doi.org/10.1007/s00285-013-0736-9 MathSciNetzbMATHGoogle Scholar
  53. 53.
    Komarova, S.V., Smith, R.J., Dixon, S.J., Sims, S.M., Wahl, L.M.: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33, 206–215 (2003).  https://doi.org/10.1016/S8756-3282(03)00157-1 Google Scholar
  54. 54.
    Kraaij, G., Zadpoor, A.A., Tuijthof, G.J.M., Dankelman, J., Nelissen, R.G.H.H., Valstar, E.R.: Mechanical properties of human bone-implant interface tissue in aseptically loose hip implants. J. Mech. Behav. Biomed. Mater. 38, 59–68 (2014).  https://doi.org/10.1016/j.jmbbm.2014.06.010 Google Scholar
  55. 55.
    Kular, J., Tickner, J., Chim, S.M., Xu, J.: An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45(12), 863–873 (2012).  https://doi.org/10.1016/j.clinbiochem.2012.03.021 Google Scholar
  56. 56.
    Kuzyk, P., Schemitsch, E.: The basic science of peri-implant bone healing. Indian J. Orthop. 45(2), 108–115 (2011)Google Scholar
  57. 57.
    Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002).  https://doi.org/10.1016/S0021-9290(02)00086-6 Google Scholar
  58. 58.
    Lerebours, C., Buenzli, P.R., Scheiner, S., Pivonka, P.: A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech. Model. Mechanobiol. 15(1), 43–67 (2016).  https://doi.org/10.1007/s10237-015-0705-x Google Scholar
  59. 59.
    Li, J., Li, H., Shi, L., Fok, A.S.L., Ucer, C., Devlin, H., Silikas, N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23(9), 1073–1078 (2007).  https://doi.org/10.1016/j.dental.2006.10.004 Google Scholar
  60. 60.
    Lieberman, D.E., Polk, J.D., Demes, B.: Predicting long bone loading from cross-sectional geometry. Am. J. Phys. Anthropol. 123(2), 156–171 (2004).  https://doi.org/10.1002/ajpa.10316 Google Scholar
  61. 61.
    Liu, X., Niebur, G.L.: Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model. Mechanobiol. 7(4), 335–344 (2008).  https://doi.org/10.1007/s10237-007-0100-3 Google Scholar
  62. 62.
    Mack, P., LaChance, P., Vose, G., Vogt, F.: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Am. J. Roentgenol. Radium Ther. Nucl. Med. 100(3), 503–511 (1967)Google Scholar
  63. 63.
    Malo, M.K.H., Rohrbach, D., Isaksson, H., Töyräs, J., Jurvelin, J.S., Tamminen, I.S., Raum, K.: Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2), 451–458 (2013).  https://doi.org/10.1016/j.bone.2013.01.015 Google Scholar
  64. 64.
    Martin, T.J., Seeman, E.: Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract. Res. Clin. Endocrinol. Metab. 22(5), 701–722 (2008).  https://doi.org/10.1016/j.beem.2008.07.006 Google Scholar
  65. 65.
    Moerman, A., Zadpoor, A.A., Oostlander, A., Schoeman, M., Rahnamay Moshtagh, P., Pouran, B., Valstar, E.: Structural and mechanical characterisation of the peri-prosthetic tissue surrounding loosened hip prostheses. An explorative study. J. Mech. Behav. Biomed. Mater. 62, 456–467 (2016).  https://doi.org/10.1016/j.jmbbm.2016.04.009 Google Scholar
  66. 66.
    Mukherjee, K., Gupta, S.: Simulation of tissue differentiation around acetabular cups?: the effects of implant-bone relative displacement and polar gap. Adv. Biomech. Appl. 1(2), 95–109 (2014)Google Scholar
  67. 67.
    Nakagaki, S., Iijima, M., Handa, K., Koike, T., Yasuda, Y., Saito, T., Mizoguchi, I.: Micro-CT and histologic analyses of bone surrounding immediately loaded miniscrew implants: comparing compression and tension loading. Dent. Mater. J. 33(2), 196–202 (2014).  https://doi.org/10.4012/dmj.2013-223 Google Scholar
  68. 68.
    Neale, S.D., Fujikawa, Y., Sabokbar, A., Gundle, R., Murray, D.W., Graves, S.E., Howie, D.W., Athanasou, N.A.: Human bone-derived cells support formation of human osteoclasts from arthroplasty-derived cells in vitro. J. Bone Jt. Surg. Br. Vol. 82(6), 892–900 (2000).  https://doi.org/10.1302/0301-620x.82b6.10175 Google Scholar
  69. 69.
    Panteli, M., Pountos, I., Jones, E., Giannoudis, P.V.: Biological and molecular profile of fracture non-union tissue: current insights. J. Cell. Mol. Med. 19(4), 685–713 (2015).  https://doi.org/10.1111/jcmm.12532 Google Scholar
  70. 70.
    Pivonka, P., Zimak, J., Smith, D.W., Gardiner, B.S., Dunstan, C.R., Sims, N.A., Mundy, G.R.: Model structure and control of bone remodeling?: a theoretical study. Bone 43, 249–263 (2008).  https://doi.org/10.1016/j.bone.2008.03.025 Google Scholar
  71. 71.
    Prendergast, P.J., Huiskes, R., Søballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997).  https://doi.org/10.1016/S0021-9290(96)00140-6 Google Scholar
  72. 72.
    Quinn, J., Joyner, C., Triffitt, J.T., Athanasou, N.A.: Polymethylmethacrylate-induced inflammatory macrophages resorb bone. J. Bone Joint Surg. 74(5), 652–658 (1992)Google Scholar
  73. 73.
    Reilly, G.C., Currey, J.D.: The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J. Exp. Biol. 202(5), 543–552 (1999)Google Scholar
  74. 74.
    Reilly, G.C., Currey, J.D.: The effects of damage and microcracking on the impact strength of bone 33, 337–343 (2000)Google Scholar
  75. 75.
    Rho, J. Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9679227
  76. 76.
    Rho, J. Y., Roy, M., & Pharr, G. M. (2000). Comments on “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur”. J. Biomech. 33(10), 1335–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11023378
  77. 77.
    Rolfson, O., Kärrholm, J., Dahlberg, L.E., Garellick, G.: Patient-reported outcomes in the Swedish hip arthroplasty register: results of a nationwide prospective observational study. J. Bone Joint Surg. Br. Vol. 93(7), 867–875 (2011).  https://doi.org/10.1302/0301-620X.93B7.25737 Google Scholar
  78. 78.
    Rubin, J., Rubin, C., Rae, C.: Molecular pathways mediating mechanical signaling in bone. Gene 367, 1–16 (2006).  https://doi.org/10.1016/j.gene.2005.10.028 Google Scholar
  79. 79.
    Salisbury Palomares, K.T., Gleason, R.E., Mason, Z.D., Cullinane, D.M., Einhorn, T.A., Gerstenfeld, L.C., Morgan, E.F.: Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J. Orthop. Res. 27(9), 1123–1132 (2009).  https://doi.org/10.1002/jor.20863 Google Scholar
  80. 80.
    Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D.: Mechanically-driven bone remodeling simulation: application to LIPUS treated rat calvarial defects. Math. Mech. Solids. 22(10), 1976–1988 (2016).  https://doi.org/10.1177/1081286516651473 MathSciNetzbMATHGoogle Scholar
  81. 81.
    Schindeler, A., McDonald, M.M., Bokko, P., Little, D.G.: Bone remodeling during fracture repair: the cellular picture. Semin. Cell Dev. Biol. 19(5), 459–466 (2008).  https://doi.org/10.1016/j.semcdb.2008.07.004 Google Scholar
  82. 82.
    Schmitt, M., Allena, R., Schouman, T., Frasca, S., Collombet, J.M., Holy, X., Rouch, P.: Diffusion model to describe osteogenesis within a porous titanium scaffold. Comput. Methods Biomech. Biomed. Eng. 16(2015), 1–9 (2015).  https://doi.org/10.1080/10255842.2014.998207 Google Scholar
  83. 83.
    Søballe, K., Hansen, E.S., Brockstedt-Rasmussen, H., Bünger, C.: Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J. Bone Joint Surg. (Br.) 75(2), 270–278 (1993)Google Scholar
  84. 84.
    Spingarn, C., Wagner, D., Rémond, Y., George, D.: Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-Med. Mater. Eng. 28(1), S153–S158 (2017)Google Scholar
  85. 85.
    Srinivasan, S., Agans, S.C., King, K.A., Moy, N.Y., Poliachik, S.L., Gross, T.S.: Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone 33(6), 946–955 (2003).  https://doi.org/10.1016/j.bone.2003.07.009 Google Scholar
  86. 86.
    Srinivasan, S., Gross, T.S.: Canalicular fluid flow induced by bending of a long bone. Med. Eng. Phys. 22(2), 127–133 (2000).  https://doi.org/10.1016/S1350-4533(00)00021-7 Google Scholar
  87. 87.
    Srinivasan, S., Weimer, D.A., Agans, S.C., Bain, S.D., Gross, T.S.: Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17(9), 1613–1620 (2002).  https://doi.org/10.1359/jbmr.2002.17.9.1613 Google Scholar
  88. 88.
    Stanford, C.M., Brand, R.A.: Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J. Prosthet. Dent. 81(5), 553–561 (1999).  https://doi.org/10.1016/S0278-2391(00)90358-6 Google Scholar
  89. 89.
    Stokes, I.A.F., Clark, K.C., Farnum, C.E., Aronsson, D.D.: Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41(2), 197–205 (2007).  https://doi.org/10.1016/j.bone.2007.04.180 Google Scholar
  90. 90.
    Strehle, J., Del Notaro, C., Orler, R., Isler, B.: The outcome of revision hip arthroplasty in patients older than age 80 years. J. Arthroplasty 15(6), 690–697 (2000).  https://doi.org/10.1054/arth.2000.7111 Google Scholar
  91. 91.
    Tiwari, A.K., Prasad, J.: Computer modelling of bone’s adaptation: the role of normal strain, shear strain and fluid flow. Biomech. Model. Mechanobiol. 16(2), 1–16 (2016).  https://doi.org/10.1007/s10237-016-0824-z Google Scholar
  92. 92.
    Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23(5), 399–407 (1998).  https://doi.org/10.1016/S8756-3282(98)00118-5 Google Scholar
  93. 93.
    Wang, H., Hao, Z., Wen, S.: Finite element analysis of the effect of medullary contact on fracture healing and remodeling in the intramedullary interlocking nail-fixed tibia fracture. Int. J. Numer. Methods Biomed. Eng. 33(4), 1–13 (2017).  https://doi.org/10.1002/cnm.2816 MathSciNetGoogle Scholar
  94. 94.
    Wiscott, H., Belser, U.: Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin. Oral Implant Res. 10, 429–444 (1999)Google Scholar
  95. 95.
    Zioupos, P., Currey, J.D.: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29(4), 978–986 (1994).  https://doi.org/10.1007/BF00351420 ADSGoogle Scholar
  96. 96.
    Zioupos, P., Hansen, U., Currey, J.D.: Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J. Biomech. 41(14), 2932–9 (2008).  https://doi.org/10.1016/j.jbiomech.2008.07.025 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.LBM – Institut de Biomécanique Humaine Georges CharpakENSAM ParisParisFrance
  2. 2.Centre des Matériaux – CNRS : UMR7633, MINES ParisTechPSL Research UniversityParisFrance
  3. 3.Matière Molle et Chimie – CNRS : UMR 7167, ESPCI ParisPSL Research UniversityParisFrance

Personalised recommendations