Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity
Original Article
First Online:
- 87 Downloads
- 2 Citations
Abstract
The Maxwell–Cattaneo heat conduction theory, the Lord–Shulman theory of thermoelasticity and a hyperbolic theory of thermoviscoelasticity are studied. The dispersion relations are analyzed in the case when a solution is represented in the form of an exponential function decreasing in time. Simple formulas that quite accurately approximate the dispersion curves are obtained. Based on the results of analysis of the dispersion relations, an experimental method of determination of the heat flux relaxation time is suggested.
Keywords
Hyperbolic thermoelasticity Hyperbolic thermoviscoelasticity Maxwell–Cattaneo law Heat flux relaxation Dispersion relationsPreview
Unable to display preview. Download preview PDF.
References
- 1.Pop, E., Sinha, S., Kenneth, E.: Goodson heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006)CrossRefGoogle Scholar
- 2.Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
- 3.Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)ADSCrossRefGoogle Scholar
- 4.Tzou, D.Y.: Macro-to-Microscale Heat Transfer. The Lagging Behaviour. Taylor and Francis, New York (1997)Google Scholar
- 5.Shashkov, A. G., Bubnov, V. A., Yanovski, S. Y.: Wave phenomena of heat conductivity: system and structural approach. (1993).(in Russian)Google Scholar
- 6.Wang, C.C.: The principle of fading memory. Arch. Ration. Mech. Anal. 18(5), 343–366 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Tzou, D.Y.: On the thermal shock wave induced by a moving heat source. Int. J. Heat Mass Transf. 111, 232–238 (1989)Google Scholar
- 8.Qiu, T.Q., Tien, C.L.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992)ADSCrossRefGoogle Scholar
- 9.Sobolev, S.L.: Transport processes and traveling waves in systems with local nonequilibrium. Sov. Phys. Uspekhi 34(3), 217 (1991)ADSCrossRefGoogle Scholar
- 10.Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247, 431–433 (1958)zbMATHGoogle Scholar
- 11.Vernotte, P.: Les paradoxes de la theorie continue de lequation de la chaleur. CR Acad. Sci. 246(22), 3154–3155 (1958)zbMATHGoogle Scholar
- 12.Lykov, A. V.: Theory of heat conduction. Vysshaya Shkola, Moscow. (1967): 599. (in russian)Google Scholar
- 13.Babenkov, M.B., Ivanova, E.A.: Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Contin. Mech. Thermodyn. 26(4), 483–502 (2014). doi: 10.1007/s00161-013-0315-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Peshkov, V.: Second sound in helium II. J. Phys. 8, 381 (1944)Google Scholar
- 15.Liu, Y., Mandelis, A.: Laser optical and photothermal thermometry of solids and thin films. Exp. Methods Phys. Sci. 42, 297–336 (2009)CrossRefGoogle Scholar
- 16.Magunov, A.N.: Laser thermometry of solids: state of the art and problems. Meas. Tech. 45(2), 173–181 (2002)CrossRefGoogle Scholar
- 17.Magunov, A.N.: Laser Thermometry of Solids. Cambridge International Science Publishing, Cambridge (2003)Google Scholar
- 18.Wang, X.: Experimental Micro/nanoscale Thermal Transport. Wiley, Hoboken (2012)CrossRefGoogle Scholar
- 19.Krilovich, V.I., Bil, G.N., Ivakin, E.V., Rubanov, A.C.: Experimental determination heat velocity. NASB 1, 129–134 (2000). (in Russian)Google Scholar
- 20.Ivakin, E.V., Kizak, A.I., Rubanov, A.S.: Active spectroscopy of rayleigh light-scattering in study of heat-transfer. Izvestiya Akademii Nauk SSSR Seriya fizicheskaya 56(12), 130–134 (1992). (in Russian)Google Scholar
- 21.Ivakin, E.V., Lazaruk, A.M., Filipov, V.V.: Application of laser induced gratings for thermal diffusivity measurements of solids. Proc. SPIE 2648, 196–206 (1995). (in Russian)ADSCrossRefGoogle Scholar
- 22.Xu, F., Tianjian, Lu: Introduction to Skin Biothermomechanics and Thermal Pain, vol. 7. Science Press, New York (2011)CrossRefGoogle Scholar
- 23.Grassmann, A., Peters, F.: Experimental investigation of heat conduction in wet sand. Heat Mass Transf. 35(4), 289–294 (1999)ADSCrossRefGoogle Scholar
- 24.Herwig, H., Beckert, K.: Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf. 36(5), 387–392 (2000)ADSCrossRefGoogle Scholar
- 25.Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)CrossRefGoogle Scholar
- 26.Mitra, K., Kumar, S., Vedavarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117, 568–573 (1995)CrossRefGoogle Scholar
- 27.Roetzel, W., Putra, N., Das, Sarit K.: Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42, 541–552 (2003)CrossRefGoogle Scholar
- 28.Vovnenko, N.V., Zimin, B.A., Sud’enkov, YuV: Nonequilibrium motion of a metal surface exposed to sub-microsecond laser pulses. Zhurnal tekhnicheskoi fiziki 80(7), 41–45 (2010). (in Russian)Google Scholar
- 29.Sudenkov, Y.V., Pavlishin, A.I.: Nanosecond pressure pulses propagating at anomalously high velocities in metal foils. Tech. Phys. Lett. 29(6), 491–493 (2003)ADSCrossRefGoogle Scholar
- 30.Szekeres, A., Fekete, B.: Continuummechanics-heat conduction-cognition. Period. Polytech. Eng. Mech. Eng. 59(1), 8 (2015)CrossRefGoogle Scholar
- 31.Tzou, D.Y.: An engineering assessment to the relaxation time in thermal wave propagation. Int. J. Heat Mass Transf. 36(7), 1845–1851 (1993). doi: 10.1016/s0017-9310(05)80171-1 CrossRefzbMATHGoogle Scholar
- 32.Gembarovic, J., Majernik, V.: Non-Fourier propagation of heat pulses in finite medium. Int. J. Heat Mass Transf. 31(5), 1073–1080 (1988)CrossRefzbMATHGoogle Scholar
- 33.Poletkin, K.V., Gurzadyan, G.G., Shang, J., Kulish, V.: Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B 107, 137–143 (2012)ADSCrossRefGoogle Scholar
- 34.Sieniutycz, S.: The variational principles of classical type for non-coupled non-stationary irreversible transport processes with convective motion and relaxation, S. Sieniutycz. Int. J. Heat Mass Transf. 20(11), 1221–1231 (1977)ADSCrossRefzbMATHGoogle Scholar
- 35.Majumdar, A.: Microscale heat conduction in lelectnc thin films. J. Heat Transf. 115, 7 (1993)CrossRefGoogle Scholar
- 36.Matsunaga, R. H., dos Santos, I.: Measurement of the thermal relaxation time in agar-gelled water. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. IEEE, pp. 5722–5725 (2012)Google Scholar
- 37.Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)ADSCrossRefzbMATHGoogle Scholar
- 38.Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)CrossRefzbMATHGoogle Scholar
- 39.Hetnarski, R.B., Ignaczak, J.: Solution-like waves in a low-temperature nonlinear thermoelastic solid. Int. J. Eng. Sci. 34, 1767–1787 (1996)CrossRefzbMATHGoogle Scholar
- 40.Green, A.E., Nagdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215(1–4), 261–286 (2010)CrossRefzbMATHGoogle Scholar
- 42.Ivanova, E.A.: On one model of generalised continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)CrossRefGoogle Scholar
- 43.Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32(2–5), 273–286 (2012)Google Scholar
- 44.Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225(3), 757–795 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Niu, T., Dai, W.: A hyperbolic two-step model-based finite-difference method for studying thermal deformation in a 3-D thin film exposed to ultrashort pulsed lasers. Numer. Heat Transf. Part A Appl. 53(12), 1294–1320 (2008)ADSCrossRefGoogle Scholar
- 46.Qin, Y.: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, vol. 184. Springer, Berlin (2008)zbMATHGoogle Scholar
- 47.Mondal, S., Mallik, S. H., Kanoria, M.: Fractional order two–temperature dual–phase–lag thermoelasticity with variable thermal conductivity. Int. Sch. Res. Not. vol. 2014, Article ID 646049, 13 pages, (2014). doi: 10.1155/2014/646049
- 48.Babenkov, M.B.: Analysis of dispersion relations of a coupled thermoelasticity problem with regard to heat flux relaxation. J. Appl. Mech, Tech. Phys. 52(6), 941–949 (2011)ADSCrossRefzbMATHGoogle Scholar
- 49.Babenkov, M.B.: Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation. J. Appl. Mech. Tech. Phys. 54(2), 277–286 (2013)ADSCrossRefzbMATHGoogle Scholar
- 50.Nowacki, W.: Dyn. Probl. Thermoelast. Springer, Berlin (1975)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2017