Advertisement

Continuum Mechanics and Thermodynamics

, Volume 29, Issue 3, pp 699–713 | Cite as

RETRACTED ARTICLE: Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles

  • C. S. K. Raju
  • K. R. Sekhar
  • S. M. Ibrahim
  • G. LorenziniEmail author
  • G. Viswanatha Reddy
  • E. Lorenzini
Original Article

Abstract

In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge–Kutta-based Newton’s technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.

Keywords

Viscous dissipation Nanofluid Temperature-dependent viscosity Truncated cone Heat source/sink Magnetic field parameter 

Nomenclature

uvw

Velocity components in xy and z directions, respectively (m/s)

x

Distance along the surface (m)

y

Distance normal to the surface (m)

\(c_\mathrm{p}\)

Specific heat capacity at constant pressure (J/kg K)

fg

Dimensionless velocities

T

Temperature of the fluid (K)

g

Acceleration due to gravity (m/s\(^{2}\))

\(k_\mathrm{f} \)

Thermal conductivity (W/mK)

\(\alpha \)

Diffusion coefficient (m\(^{2}\)/s)

P

Pressure (pa)

Greek symbols

\(\eta \)

Similarity variable

\(\sigma \)

Electrical conductivity (Siemens)

\(\sigma ^{*}\)

Stefan–Boltzmann constant (W m/K\(^{4}\))

\(k^{*}\)

Mean absorption coefficient

\(\beta _\mathrm{T} \)

Volumetric thermal expansion (K\(^{-1}\))

\(\theta \)

Dimensionless temperature (K)

\(\rho _\mathrm{f} \)

Density (kg/m\(^{3}\))

\(\nu _\mathrm{f} \)

Kinematic viscosity (m\(^{2}\)/s)

\(\mu _\mathrm{f} \)

Dynamic viscosity (N s/m\(^{2}\))

\(\phi \)

Nanoparticle volume fraction

\((\rho c_\mathrm{p} )_\mathrm{f} \)

Effective heat capacity of the fluid (kg/m\(^{3}\)K)

\((\rho c_\mathrm{p} )_\mathrm{p} \)

Effective heat capacity of the nanoparticle medium (kg/m\(^{3}\)K)

Nondimensional parameters

\(Q_\mathrm{H} \)

Heat source/sink parameter

\(Cf_x \)

Skin friction coefficient in x direction

\(Cf_y \)

Skin friction coefficient in y direction

\(Nu_x \)

Local Nusselt number

\({Re}_x \)

Local Reynolds number

\({ Pr}\)

Prandtl number

Ec

Eckert number

E

Viscous variation parameter

We

Weissenberg number

n

Power-law index parameter

\(\gamma \)

Half-angle parameter

\(\lambda \)

Buoyancy parameter

\(\alpha _1 \)

Ratio of angles

M

Magnetic field parameter

\(Gr_x \)

Grashof number

Subscripts

f

Fluid

w

Condition at the wall

\(\infty \)

Condition at the free stream

nf

Nanofluid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tien, C.L.: Heat transfer by laminar flow from a rotating cone. J. Heat Transf. 82, 252–253 (1960)CrossRefGoogle Scholar
  2. 2.
    Lin, A., Robin, S.G.: Three-dimensional supersonic viscous flow over a cone at incidence. AIAA J. 20, 1500–1507 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Subba, R., Gorla, R.: Mixed convection of a micropolar fluid from rotating cone. Int. J. Heat Fluid Flow 16(1), 69–73 (1995)CrossRefGoogle Scholar
  4. 4.
    Chamkha, A.J.: Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Transf. Part A Appl. Int. J. Comput. Methods 39(5), 511–530 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Mahdy, A., Chamkha, A.J., Baba, Y.: Double-diffusive convection with variable viscosity from a vertical truncated cone in porous media in the presence of magnetic field and radiation effects. Comput. Math. Appl. 59(12), 3867–3878 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Saleem, S., Nadeem, S., Haq, R.U.: Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur. Phys. J. Plus 129, 1–8 (2014). doi: 10.1140/epjp/i2014-14213-1 CrossRefGoogle Scholar
  7. 7.
    Raju, C.S.K., JayachandraBabu, M., Sandeep, N.: Chemically reacting radiative MHD Jeffrey nanofluid flow over a cone in porous medium. Int. J. Eng. Res. Africa 19, 75–90 (2015). doi: 10.4028/www.scientific.net/JERA.19.75 CrossRefGoogle Scholar
  8. 8.
    Saleem, S., Nadeem, S.: Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects. J. Hydrodyn. 27, 616–623 (2015). doi: 10.1016/S1001-6058(15)60523-6 ADSCrossRefGoogle Scholar
  9. 9.
    Nadeem, S., Saleem, S.: Unsteady mixed convection flow of a rotating second-grade fluid on a rotating cone. Heat Transf. Asian Res. 43, 204–220 (2014). doi: 10.1002/htj.21072 CrossRefGoogle Scholar
  10. 10.
    Raju, C.S.K., Sandeep, N.: Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J. Mol. Liq. 215, 115–126 (2016). doi: 10.1016/j.molliq.2015.12.058 CrossRefGoogle Scholar
  11. 11.
    Patrulescu, F.O., Grosan, T., Pop, I.: Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid. Int. J. Numer. Methods Heat Fluid Flow 24(5), 1175–1190 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Selim, A., Hossain, M.A., Rees, D.A.S.: The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. Int. J. Therm. Sci. 42, 973–982 (2003). doi: 10.1016/S1290-0729(03)00075-9 CrossRefGoogle Scholar
  13. 13.
    Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011). doi: 10.1016/j.ijthermalsci.2011.02.019 CrossRefGoogle Scholar
  14. 14.
    Hogan, C.: Density of states of an insulating ferromagnetic alloy. Phys. Rev. 188(2), 870 (1969)ADSCrossRefGoogle Scholar
  15. 15.
    Parayanthal, P., Pollak, F.H.: Raman scattering in alloy semiconductors: spatial correlation model. Phys. Rev. Lett. 52, 1822–1825 (1984). doi: 10.1103/PhysRevLett.52.1822 ADSCrossRefGoogle Scholar
  16. 16.
    Žitňanský, M., Čaplovič, L.: Effect of the thermomechanical treatment on the structure of titanium alloy Ti\(_6\)Al\(_4\)V. J. Mater. Process. Technol. (2004). doi: 10.1016/j.jmatprotec.2004.07.151
  17. 17.
    Zhu, X.J., Tan, M.J., Zhou, W.: Enhanced super plasticity in commercially pure titanium alloy. Scr. Mater. 52, 651–655 (2005). doi: 10.1016/j.scriptamat.2004.11.017 CrossRefGoogle Scholar
  18. 18.
    Hao, Y.L., Li, S.J., Sun, B.B., Sui, M.L., Yang, R.: Ductile titanium alloy with low poisson’s ratio. Phys. Rev. Lett. (2007). doi: 10.1103/PhysRevLett.98.216405
  19. 19.
    Balazic, M., Kopac, J., Jackson, M.J., Ahmed, W.: Review: titanium and titanium alloy applications in medicine. Int. J. Nano Biomater. 1, 3–34 (2007). doi: 10.1504/IJNBM.2007.016517 CrossRefGoogle Scholar
  20. 20.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1, 2nd edn. Clarendon Press, Oxford (1881)zbMATHGoogle Scholar
  21. 21.
    Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. In: Siginer, D.A., Wang, H.P. (eds.) FED-Vol. 66, pp. 99–105. ASME, New York (1995)Google Scholar
  22. 22.
    Aksoy, Y.: Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux. Int. J. Therm. Sci. 107, 1–12 (2016). doi: 10.1016/j.ijthermalsci.2016.03.017 CrossRefGoogle Scholar
  23. 23.
    Bachok, N., Ishak, A., Pop, I.: Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Thermal Sci. 49(9), 1663–1668 (2010)CrossRefGoogle Scholar
  24. 24.
    Chamka, A.J., Aly, A.M.: MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. J. Chem. Eng. Commun. 198(3), 425–441 (2010)CrossRefGoogle Scholar
  25. 25.
    Hoffmann, J.-F., Henry, J.-F., Vaitilingom, G., Olives, R., Chirtoc, M., Caron, D., et al.: Temperature dependence of thermal conductivity of vegetable oils for use in concentrated solar power plants, measured by 3omega hot wire method. Int. J. Therm. Sci. 107, 105–110 (2016). doi: 10.1016/j.ijthermalsci.2016.04.002 CrossRefGoogle Scholar
  26. 26.
    Noghrehabadi, A., Behseresht, A.: Flow and heat transfer affected by variable properties of nanofluids in natural convection over a vertical cone in porous media. Comput. Fluids 88, 313–325 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Anilkumar, D., Roy, S.: Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math. Comput. 155, 545–561 (2004). doi: 10.1016/S0096-3003(03)00799-9 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cheng, Y.C.: Free convection heat transfer from a non-isothermal permeable cone with suction and temperature-dependent viscosity. J. Appl. Sci. Eng. 18(1), 17–24 (2015)ADSGoogle Scholar
  29. 29.
    Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240 (2006). doi: 10.1115/1.2150834 CrossRefGoogle Scholar
  30. 30.
    Raju, C.S.K., Sandeep, N.: Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: a numerical study. J. Magn. Magn. Mater (2017). doi: 10.1016/j.jmmm.2016.08.013
  31. 31.
    Mabood, F., Ibrahim, S.M., Rashidi, M.M., Shadloo, M.S., Lorenzini, Giulio: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat Mass Transf. 93, 674–682 (2016)CrossRefGoogle Scholar
  32. 32.
    Raju, C.S.K., Sandeep, N., Sugunamma, V.: Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application. J. Mol. Liq (2016). doi: 10.1016/j.molliq.2016.07.143
  33. 33.
    Mallikarjuna, B., Chamkha, A.J., Vijaya, R.B.: Soret and dufour effects on double diffusive convective flow through a non-Darcy porous medium in a cylindrical annular region in the presence of heat sources. J. Porous Media 17(7), 623–636 (2014)Google Scholar
  34. 34.
    Raju, C.S.K., Sandeep, N.: Falkner Skan flow of a magnetic Carreau fluid past a wedge in the presence of cross diffusion. Eur. Phys. J. Plus 131, 267 (2016)CrossRefGoogle Scholar
  35. 35.
    Mabood, F., Ibrahim, S.M.: Effects of Soret and non-uniform heat source on MHD non-Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation. J. Appl. Fluid Mech. 9(5), 2503–2513 (2016)Google Scholar
  36. 36.
    Raju, C.S.K., Sandeep, N.: The effect of thermal radiation on MHD ferrofluid flow over a truncated cone in the presence of non-uniform heat source/sink. Glob. J. Pure Appl. Math. 12(1), 9–15 (2016)Google Scholar
  37. 37.
    Mallikarjuna, B., Rashad, A.M., Chamkha, A.J., Raju, S.H.: Chemical reaction effects on MHD convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afrika Matematika 27(3–4), 645–665 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Raju, C.S.K., Ibrahim, S.M., Anuradha, S., Priyadharshini, P.: Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection. Eur. Phys. J. Plus. (2016). doi: 10.1140/epjp/i2016-16409-7 CrossRefGoogle Scholar
  39. 39.
    Raju, R.S., Sudhakar, K., Rangamma, M.J.: The effects of thermal radiation and heat source on an unsteady MHD free convection flow past an infinite vertical plate with thermal diffusion and diffusion thermo. Inst. Eng. India Ser. C 94, 175 (2013). doi: 10.1007/s40032-013-0063-3 CrossRefGoogle Scholar
  40. 40.
    Ibrahim, S.M., Suneetha, K.: Heat source and chemical effects on MHD convection flow embedded in a porous medium with Soret, viscous and Joules dissipation. Ain Shams Eng. J. 7(2), 811–818 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. S. K. Raju
    • 1
  • K. R. Sekhar
    • 2
  • S. M. Ibrahim
    • 3
  • G. Lorenzini
    • 4
    Email author
  • G. Viswanatha Reddy
    • 2
  • E. Lorenzini
    • 5
  1. 1.Department of MathematicsVIT UniversityVelloreIndia
  2. 2.Department of MathematicsSri Venkateswara UniversityTirupatiIndia
  3. 3.Department of MathematicsGITAM UniversityVisakhapatnamIndia
  4. 4.Department of Engineering and ArchitectureUniversity of ParmaParmaItaly
  5. 5.Department of Industrial EngineeringAlma Mater Studiorum-University of BolognaBolognaItaly

Personalised recommendations