Advertisement

Existence and stability results for thermoelastic dipolar bodies with double porosity

  • 103 Accesses

  • 17 Citations

Abstract

This paper is concerned with the theory of thermoelastic dipolar bodies which have a double porosity structure. In contrast with previous papers dedicated to classical elastic bodies, in our context the double porosity structure of the body is influenced by the displacement field, which is consistent with real models. In this setting, we show instability of solution as the initial energy is negative while under an appropriated (and realistic) condition, we prove existence and uniqueness of solution using semi-group theory.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

  2. 2.

    Ames, K.A., Payne, L.E.: Stabilizing solutions of the equations of dynamical linear thermoelasticity backward in time. Stab. Appl. Anal. Contin. Media 1, 243–260 (1991)

  3. 3.

    Barenblatt, G.I., Zheltov, I.P.: On the basic equations of seepage of homogeneous liquids in fissured rock. Akad. Nauk SSSR 132, 545–548 (1960)

  4. 4.

    Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

  5. 5.

    Ciarletta, M., Straughan, B., Zampoli, V.: Poroacoustic acceleration waves in a Jordan–Darcy–Cattaneo material. Int. J. Non-linear Mech. 52, 8–11 (2013)

  6. 6.

    Ciumaşu, G.S.: On finite deformation of elastic dipolar continuum. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz. 41(45)(3–4), 103–108 (1995)

  7. 7.

    Costabel, M., Dauge, M., Nicaise, S.: Corner singularities and analytic regularity for linear elliptic systems. Part I: smooth domains. http://hal.archives-ouvertes.fr/hal-00453934/en/ Online version of Chapters 1 to 5 (2010)

  8. 8.

    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

  9. 9.

    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

  10. 10.

    Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)

  11. 11.

    Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

  12. 12.

    Iesan, D.: Thermoelastic Models of Continua. Kluwer Academic, Dordrecht (2004)

  13. 13.

    Iesan, D., Quintanilla, R.: On a theory of thermoelastic materials with double porosity structure. J. Therm. Stress. 37, 1017–1036 (2014)

  14. 14.

    Iovane, G., Passarella, F.: Saint-Venant’s principle in dynamic porous thermoelastic media with memory for heat flux. J. Therm. Stress. 27(11), 983–999 (2004)

  15. 15.

    Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermohydro- mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 1–5 (2003)

  16. 16.

    Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Research Notes in Mathematics, vol. 398. Chapman & Hall/CRC, Boca Raton (1999)

  17. 17.

    Marin, M.: On the minimum principle for dipolar materials with stretch. Nonlinear Anal. Real World Appl. 10(3), 1572–1578 (2009)

  18. 18.

    Marin, M.: An evolutionary equation in thermoelasticity of dipolar bodies. J. Math. Phys. 40(3), 1391–1399 (1999)

  19. 19.

    Marin, M., Agarwal, R.P., Mahmoud, S.R.: Nonsimple material problems addressed by the Lagrange’s identity. Bound. Value Probl. 2013, Art. no. 135. 1–14 (2013)

  20. 20.

    Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Ann. Sci. Univ. Ovidius Serie-Math 22(1), 169–188 (2014)

  21. 21.

    Mindlin, R.D.: Microstrucure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–77 (1964)

  22. 22.

    Nicaise, S., Valein, J.: Stabilization of non-homogeneous elastic materials with voids. J. Math. Anal. Appl. 387(2), 1061–1087 (2012)

  23. 23.

    Noll, W.: The Foundations of Mechanics and Thermodynamics. Springer, Berlin (1974)

  24. 24.

    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

  25. 25.

    Pazy, A.: Semigroups of Linear Operators and Applications. Springer, New York (1983)

  26. 26.

    Plavšić, M.: Mehanika prostih polarnih kontinuuma. Matematički Institut, Belgrade, Special Editions of the Belgrade Institute of Mathematics, Vol. 13 (1975)

  27. 27.

    Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials-I. Phys. Rev. E 68, 1–11 (2003)

  28. 28.

    Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stress. 37(6), 727–748 (2014)

  29. 29.

    Scarpetta, E., Svanadze, M.: Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J. Elast. 120, 67–86 (2015)

  30. 30.

    Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Ann. Sci. Univ. Ovidius Serie-Math. 22(2), 151–175 (2014)

  31. 31.

    Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

  32. 32.

    Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)

  33. 33.

    Svanadze, M., De Cicco, S.: Fundamental solutions in the full coupled theory of elasticity for solids with double porosity. Arch. Mech. 65(5), 367–390 (2013)

  34. 34.

    Truesdell, C.: A First Course in Rational Continuum Mechanics, 2nd edn. Academic Press, San Diego (1991)

  35. 35.

    Wilson, R., Aifantis, E.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20, 1009–1035 (1982)

  36. 36.

    Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

Download references

Author information

Correspondence to M. Marin.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Nicaise, S. Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28, 1645–1657 (2016). https://doi.org/10.1007/s00161-016-0503-4

Download citation

Keywords

  • Thermoelasticity
  • Micropolar
  • Double porosity
  • Instability