Advertisement

Continuum Mechanics and Thermodynamics

, Volume 28, Issue 5, pp 1445–1460 | Cite as

Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

  • L. Augustins
  • R. Billardon
  • F. Hild
Original Article

Abstract

The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

Keywords

Flake graphite cast iron Constitutive model Brake discs Anisotropic damage Damage deactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdi, R.E., Samrout, H.: Effet de la distribution du flux dans un disque de frein sous sollicitations thermomécaniques. Méc. Industr. Matériaux 52, 25–30 (1999)Google Scholar
  2. 2.
    Augustins, L., Billardon, R., Hild, F.: Constitutive model for flake graphite cast iron automotive brake discs. From macroscopic multiscale models to a 1D rheological description. Contin. Mech. Thermodyn. (2015). doi: 10.1007/s00161-015-0448-z
  3. 3.
    Auld, B.A.: Acoustic Fields and Waves in Solids, pp. 74–75. Robert E. Krieger Publishing Company, Malabar, FL, USA (1990)Google Scholar
  4. 4.
    Bagnoli F., Dolce F., Bernabei M.: Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Eng. Fail. Anal. 16, 152–163 (2009)CrossRefGoogle Scholar
  5. 5.
    Besson, J.: Implementation of material constitutive equations in finite element codes. http://mms2.ensmp.fr/msi_paris/nlfe/transparents/paris_tech2005b. Accessed 30 Sep 2013
  6. 6.
    Chaboche, J.L.: Sur l’utilisation des variables d’état internes pour la description du comportement viscoplastique et de larupture par endommagement. In: Problémes NonLinéaires deMécanique, Symp. Franco-Polonais de rhéologie etmécanique, pp. 137–159 (1977)Google Scholar
  7. 7.
    Chaboche, J.L.: Description phénoménologique de la viscoplasticité cyclique avec endommagement.Thèse d’Etat,Université Pierre et Marie Curie, Paris 6 (1978)Google Scholar
  8. 8.
    Chaboche, J.L.: Le concept de contrainte effective appliquée à l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope. Mech. Behav. Anisotropic Solids Proc., Euromech 115, pp. 737–760 (1979)Google Scholar
  9. 9.
    Chow C.L., Wang J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Int. J. Fract. 27, 547–558 (1987)Google Scholar
  10. 10.
    Cordebois, J.P., Sidoroff, F.: Endommagement anisotrope en élasticité et plasticité. J. Méc. Théor. Appl. Numéro spécial, 45–60 (1982)Google Scholar
  11. 11.
    Cristol, A.L., Desplanques, Y., Osterle, W., Degallaix, G.: Coupling between thermal localisation and friction mechanisms: heat accumulation effect. In: Proceedings of the 6th European Conference on Braking, pp. 61–69 (2010)Google Scholar
  12. 12.
    D’Cruz, A.H.: Surface crack initiation in ventilated disc brakes under transient thermal loading. Proc. Inst. Mech. Eng. C382/05 (1989)Google Scholar
  13. 13.
    Denoual C., Hild F.: A damage model for the dynamic fragmentation of brittle solids. Comput. Meth. Appl. Mech. Eng. 183, 247–258 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Desmorat R., Gatuingt F., Ragueneau F.: Non local anisotropic damage model and related computational aspects for quasi-brittle materials. Eng. Fract. Mech. 74, 1539–1560 (2007)CrossRefGoogle Scholar
  15. 15.
    Dufrenoy, P.: Etude du comportement thermomécanique des disques de freins vis à vis des risques de défaillance. Application au domaine ferroviaire. Ph.D. thesis, Université des sciences et technologies de Lille (1995)Google Scholar
  16. 16.
    Dufrenoy P., Bodovillé G., Degallaix G.: Damage mechanisms and thermomechanical loading of brake discs. Eur. Struct. Integr. Soc. 29, 167–176 (2002)CrossRefGoogle Scholar
  17. 17.
    Fabrikant V.I.: Complete solutions to some mixed boundary value problems in elasticity. Adv. Appl. Mech 27, 153–223 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Forquin P., Hild F.: A probabilistic damage model of the dynamic fragmentation process in brittle materials. Adv. Appl. Mech. 44, 1–72 (2010)CrossRefGoogle Scholar
  19. 19.
    Ganczarski, A., Cegielski, M.: Damage deactivation of engineering materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, pp. 153–163. Springer, Berlin (2013)Google Scholar
  20. 20.
    Germain, P.: Cours de mécanique des milieux continus. Masson, Paris (1973)Google Scholar
  21. 21.
    Gilbert G.: An evaluation of the stress–strain properties of flake graphite cast iron in tension and compression. J. Br. Cast Iron Res. Assoc. 7, 745–789 (1959)Google Scholar
  22. 22.
    Halm D., Dragon A.: A model of anisotropic damage by mesocrack growth; unilateral effect. Int. J. Damage Mech. 5, 384–402 (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kachanov L.M.: Continuum model of medium with cracks. J. Eng. Mech. Divis. 106, 1039–1051 (1980)Google Scholar
  24. 24.
    Krajcinovic, D.: Damage Mechanics. North Holland, Amsterdam (1996)Google Scholar
  25. 25.
    Leckie, F.A., Onat, E.T.: Tensorial nature of damage measuring internal variables. In: Hult, J., Lemaitre, J. (eds.) Physical non-linearities in structural analysis. International Union of Theoretical and Applied Mechanics, pp. 140–155. Springer, Berlin, Heidelberg (1981)Google Scholar
  26. 26.
    Lee S., Yeo T.: Temperature and coning analysis of brake rotor using axisymmetric finite element technique. Sci. Technol. 3, 17–22 (2000)Google Scholar
  27. 27.
    Lemaitre J., Chaboche J.L.: Aspect phénoménologique de la rupture par endommagement. J. Méc. Appl. 3, 317–365 (1978)Google Scholar
  28. 28.
    Lemaitre, J., Chaboche, J.L.: Mécanique des Matériaux Solides, 2nd edn. Dunod, Paris (1996)Google Scholar
  29. 29.
    Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, Berlin, Heidelberg (2005)Google Scholar
  30. 30.
    Limpert, R.: Brake Design and Safety, 2nd edn. SAE Inernational, Warrendale, PA, USA (1999)Google Scholar
  31. 31.
    Lubarda V.A., Krajcinovic D.: Damage tensors and crack density distribution. Int. J. Solids Struct. 30, 2859–2877 (1993)CrossRefzbMATHGoogle Scholar
  32. 32.
    Marquis, D.: Phénoménologie et thermodynamique—application au couplage entre la thermoélasticité, la plasticité, levieillissement et l’endommagement. Thèse d’Etat, Université Pierre et Marie Curie, Paris 6 (1989)Google Scholar
  33. 33.
    Murakami, S., Ohno, A.: A continuum theory of creep and creep damage. In: Ponter, A.R.S., Hayhurst, D.R. (eds.) Creep in structures. International Union of Theoretical and Applied Mechanics, pp. 422–444. Springer, Berlin, Heidelberg (1981)Google Scholar
  34. 34.
    Ortiz, M.: A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 4, 67–93 (1985)Google Scholar
  35. 35.
    Ortiz M., Popov E.P.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Methods Eng. 21, 1561–1576 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Petry, C.: Caractérisation et modélisation du comportement et de l’endommagement d’alliages métalliques sur une grande plage de température. Ph.D. thesis, Ecole Normale Supérieure de Cachan (2006)Google Scholar
  37. 37.
    Simulia: Abaqus/Strandard subroutines. Abaqus 6.13 User Subroutines Reference Manual Section 1.1 (2013)Google Scholar
  38. 38.
    Skrzypek J., Ganczarski A.: Application of the orthotropic damage growth rule to variable principal directions. Int. J. Damage Mech. 7, 180–206 (1998)CrossRefGoogle Scholar
  39. 39.
    Vallet, F.: Etude de la fissuration d’un disque de frein à partir de l’analyse de son comportement thermomécanique. Ph.D. thesis, INSA, Lyon (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.PSA Peugeot CitroënVelizy-Villacoublay CedexFrance
  2. 2.Messier-Bugatti-DowtyVélizy-VillacoublayFrance
  3. 3.LMT Cachan, ENS Cachan/CNRS/University Paris SaclayCachan CedexFrance

Personalised recommendations