Advertisement

Continuum Mechanics and Thermodynamics

, Volume 28, Issue 5, pp 1411–1419 | Cite as

The Oberbeck–Boussinesq approximation as a constitutive limit

  • Yoshiyuki Kagei
  • Michael Růžička
Original Article
  • 106 Downloads

Abstract

We derive the usual Oberbeck–Boussinesq approximation as a constitutive limit of the full system describing the motion of an compressible linearly viscous fluid. To this end, the starting system is written, using the Gibbs free energy, in the variables v, θ and p. The Oberbeck–Boussinesq system is then obtained as the thermal expansion coefficient α and the isothermal compressibility coefficient β tend to zero.

Keywords

Oberbeck–Boussinesq approximation Constitutive limit Gibbs free energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechtel S.E., Forest M.G., Rooney F.J., Wang Q.: Thermal expansion models of viscous fluids based on limits of free energy. Phys. Fluids 15, 2681 (2003)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Bechtel S.E., Cai M., Rooney F.J., Wang Q.: Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothermal plane Couette and Poiseuille flows. Phys. Fluids 16, 3955 (2004)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Boussinesq J.: Théorie Analytique de la Chaleur. Gauthier-Villars, Paris (1903)Google Scholar
  4. 4.
    Chandrasekhar S.: The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)Google Scholar
  5. 5.
    Feireisl E., Novotný A.: The Oberbeck–Boussinesq approximation as a singular limit of the full Navier–Stokes–Fourier system. J. Math. Fluid Mech. 11, 274 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Feireisl E., Novotný A.: Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009)zbMATHGoogle Scholar
  7. 7.
    Hills R.N., Roberts P.H.: On the motion of a fluid that is incompressible in a generalized sense and its relationship to the Boussinesq approximation. Stab. Appl. Anal. Contin. Media 1, 205 (1991)MathSciNetGoogle Scholar
  8. 8.
    Kagei Y., Růžička M., Thäter G.: Natural convection with dissipative heating. Commun. Math. Phys. 214, 287 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kagei Y., Růžička M., Thäter G.: A limit problem in natural convection. NoDEA 13, 447 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mihaljan J.M.: A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J. 136, 1126 (1962)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Annalen der Physik und Chemie. 7, 271 (1879) Über die Bewegungserscheinungen der Atmosphäre. Sitz. Ber. K. Preuss. Akad. Miss. 383 and 1120 (1888)Google Scholar
  12. 12.
    Rajagopal K.R., Råužička M., Srinivasa A.R.: On the Oberbeck–Boussinesq approximation. Math. Models Methods Appl. Sci. 6, 1157–1167 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Spiegel E.A., Veronis G.: On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442 (1960)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of MathematicsKyushu UniversityFukuokaJapan
  2. 2.Institute of Applied MathematicsUniversity of FreiburgFreiburgGermany

Personalised recommendations