Continuum Mechanics and Thermodynamics

, Volume 28, Issue 5, pp 1325–1346 | Cite as

Microstructure-based modelling of multiphase materials and complex structures

  • Ewald Werner
  • Robert Wesenjak
  • Alexander Fillafer
  • Felix Meier
  • Christian Krempaszky
Original Article


Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.


Micromechanical modelling Microstructure representation Multiphase materials Dual-phase steel Semiconductor devices Failure Strain partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerjee S., Ghosh S.K., Datta S., Saha S.K.: Segmentation of dual phase steel micrograph: an automated approach. Measurement 46(8), 2435–2440 (2013) doi:  10.1016/j.measurement.2013.04.057 CrossRefGoogle Scholar
  2. 2.
    Bishop J., Hill R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Lond. Edinb. Dublin Philos. Mag. J. Sci 42(327), 414–427 (1951) doi:  10.1080/14786445108561065 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Böhm, H.: A short introduction to basic aspects of continuum micromechanics. ILSB Arbeitsbericht 206, ILSB, Vienna University of Technology (1998)
  4. 4.
    Böhm H., Eckschlager A., Han W.: Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci. 25(1–2), 42–53 (2002) doi:  10.1016/S0927-0256(02)00248-3 CrossRefGoogle Scholar
  5. 5.
    Böhm H., Han W.: Comparisons between three-dimensional and two dimensional multi-particle unit cell models for particle reinforced metal matrix composites. Model. Simul. Mater. Sci. Eng. 9(2), 47–65 (2001) doi:  10.1088/0965-0393/9/2/301 ADSCrossRefGoogle Scholar
  6. 6.
    Bornert M.: Homogénéisation des milieux aléatoires: Bornes et estimations. In: Bornert, M., Bretheau, T., Gilormini, P. (eds.) Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pp. 132–221. Editions Hermès, Paris (2001)Google Scholar
  7. 7.
    Chawla N., Sidhu R., Ganesh V.: Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Mater. 54(6), 1541–1548 (2006) doi:  10.1016/j.actamat.2005.11.027 CrossRefGoogle Scholar
  8. 8.
    Ciappa M., Malberti P.: Plastic-strain of aluminium interconnections during pulsed operation of IGBT multichip modules. Qual. Reliab. Eng. Int. 12(4), 297–303 (1996) doi:  10.1002/(SICI)1099-1638(199607)12:4<297::AID-QRE21>3.0.CO;2-C CrossRefGoogle Scholar
  9. 9.
    Clayton J.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53(2), 261–301 (2005) doi:  10.1016/j.jmps.2004.06.009 ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Cox D.R., Isham V.: Point Processes. Monographs on Applied Probability and Statistics. Chapman and Hall, London; New York (1980)Google Scholar
  11. 11.
    Dehm G., Balk T., Edongué H., Arzt E.: Small-scale plasticity in thin Cu and Al films. Microelect. Eng. 70(2–4), 412–424 (2003) doi:  10.1016/S0167-9317(03)00395-2 CrossRefGoogle Scholar
  12. 12.
    Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241(1226), 376–396 (1957) doi:  10.1098/rspa.1957.0133 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fillafer, A.: Fließ- und Mikroschädigungsverhalten ferritisch-martensitischer Dualphasenstähle. Dissertation, TU München (2015)Google Scholar
  14. 14.
    Fillafer A., Krempaszky C., Werner E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014) doi:  10.1016/j.msea.2014.07.029 CrossRefGoogle Scholar
  15. 15.
    Fischmeister H., Karlsson B.: Plastizitätseigenschaften grob-zweiphasiger Werkstoffe. Zeitschrift für Metall-kunde 68(5), 311–327 (1977)Google Scholar
  16. 16.
    Hadamard J.: Leçons sur la propagation des ondes et les équations de l’hydro- dynamique, 1 edn. Librairie Scientifique, Paris (1903)zbMATHGoogle Scholar
  17. 17.
    Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Appl. Mech. 11, 127–140 (1963)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Heinz W., Pippan R., Dehm G.: Investigation of the fatigue behavior of Al thin films with different microstructure. Mater. Sci. Eng. A 527(29–30), 7757–7763 (2010) doi:  10.1016/j.msea.2010.08.046 CrossRefGoogle Scholar
  19. 19.
    Hill R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349–354 (1952) doi:  10.1088/0370-1298/65/5/307 ADSCrossRefGoogle Scholar
  20. 20.
    Hill R.: On the problem of uniqueness in the theory of a rigid-plastic solid—III. J. Mech. Phys. Solids 5(3), 153–161 (1957) doi:  10.1016/0022-5096(57)90001-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hill R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958) doi:  10.1016/0022-5096(58)90029-2 ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Hill R.: Acceleration waves in solids. J. Mech. Phys. Solids 10(1), 1–16 (1962) doi:  10.1016/0022-5096(62)90024-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hill R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963) doi:  10.1016/0022-5096(63)90036-X ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Hill R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13(2), 89–101 (1965) doi:  10.1016/0022-5096(65)90023-2 ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965) doi:  10.1016/0022-5096(65)90010-4 ADSCrossRefGoogle Scholar
  26. 26.
    Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)Google Scholar
  27. 27.
    Hill R., Hutchinson J.W.: Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids 23(4), 239–264 (1975) doi:  10.1016/0022-5096(75)90027-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hiraoka K.: Elastoplastic creep analysis of thermal stress and strain in aluminum interconnects of LSIs. Elect. Commun. Japan Part II Elect. 77(3), 93–105 (1994) doi:  10.1002/ecjb.4420770311 CrossRefGoogle Scholar
  29. 29.
    ISO 12004-2:2008: Metallic materials-Sheet and strip-Determination of forming limit curves—Part 2: Determination of forming limit curves in the laboratory. International Organization for Standardization, Geneva, Switzerland (2008)Google Scholar
  30. 30.
    Jähne B.: Digitale Bildverarbeitung, 7th edn. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Johnson W., Mehl R.: Reaction kinetics in processes of nucleation and growth. Trans. Metall. Soc. AIME 135, 416–458 (1939)Google Scholar
  32. 32.
    Kalidindi S., Bronkhorst C., Anand L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992) doi: 10.1016/0022-5096(92)80003-9 ADSCrossRefGoogle Scholar
  33. 33.
    Kanert, W.: Reliability challenges for power devices under active cycling. In: Reliability Physics Symposium, 2009 IEEE International, pp. 409–415 (2009). doi: 10.1109/IRPS.2009.5173288
  34. 34.
    Kanert, W., Pufall, R., Wittler, O., Dudek, R., Bouazza, M.: Modelling of metal degradation in power devices under active cycling conditions. pp. 1/6–6/6. IEEE (2011). doi: 10.1109/ESIME.2011.5765771
  35. 35.
    Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003) doi: 10.1016/S0020-7683(03)00143-4 CrossRefzbMATHGoogle Scholar
  36. 36.
    Kenesei P., Borbély A., Biermann H.: Microstructure based three dimensional finite element modeling of particulate reinforced metal–matrix composites. Mater. Sci. Eng. A 387–389, 852–856 (2004) doi: 10.1016/j.msea.2004.02.076 CrossRefGoogle Scholar
  37. 37.
    Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Dissertation, TU Eindhoven (2002)Google Scholar
  38. 38.
    Krempaszky, C., Očenášek, J., Espinoza, V., Werner, E., Hebesberger, T., Pichler, A.: Micromechanical modelling of the formability of dual-phase steels. In: Stout, M.R., Chu, E., Mehta, M., Banovic, S.W. (eds.) Proceedings MS &T 2007, Fundamentals and Characterization, pp. 431–444. Association for Iron & Steel and TMS, Warrendale, PA, USA (2007)Google Scholar
  39. 39.
    Lebensohn R., Bringa E., Caro A.: A viscoplastic micromechanical model for the yield strength of nanocrystalline materials. Acta Mater. 55(1), 261–271 (2007) doi: 10.1016/j.actamat.2006.07.023 CrossRefGoogle Scholar
  40. 40.
    Liedl U., Traint S., Werner E.: An unexpected feature of the stress–strain diagram of dual-phase steel. Comput. Mater. Sci. 25(1–2), 122–128 (2002) doi: 10.1016/S0927-0256(02)00256-2 CrossRefGoogle Scholar
  41. 41.
    Mandel, J.: Conditions de Stabilité et Postulat de Drucker. In: Kravtchenko, J., Sirieys, P. (eds.) Rheology and Soil Mechanics / Rhéologie et Mécanique des Sols, International Union of Theoretical and Applied Mechanics, pp. 58–68. Springer Berlin Heidelberg (1966). doi: 10.1007/978-3-642-46047-0_5
  42. 42.
    McLaughlin R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15(4), 237–244 (1977) doi: 10.1016/0020-7225(77)90058-1 CrossRefzbMATHGoogle Scholar
  43. 43.
    Meier F., Schwarz C., Werner E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014) doi: 10.1016/j.commatsci.2014.03.020 CrossRefGoogle Scholar
  44. 44.
    Mori T., Tanaka K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRefGoogle Scholar
  45. 45.
    Moulinec H., Suquet P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998) doi: 10.1016/S0045-7825(97)00218-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Moulinec H., Suquet P.: Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties. Phys. B Condens. Matter 338(1–4), 58–60 (2003) doi: 10.1016/S0921-4526(03)00459-9 ADSCrossRefGoogle Scholar
  47. 47.
    Norris A.: A differential scheme for the effective moduli of composites. Mech. Mater. 4(1), 1–16 (1985) doi: 10.1016/0167-6636(85)90002-X CrossRefGoogle Scholar
  48. 48.
    Nygårds M.: Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech. Mater. 35(11), 1049–1057 (2003) doi: 10.1016/S0167-6636(02)00325-3 CrossRefGoogle Scholar
  49. 49.
    Ostoja-Starzewski M.: Material spatial randomness: From statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006) doi: 10.1016/j.probengmech.2005.07.007 CrossRefGoogle Scholar
  50. 50.
    Ostoja-Starzewski, M., Du, X., Khisaeva, Z., Li, W.: On the size of representative volume element in elastic, plastic, thermoelastic and permeable random microstructures. In: Chandra, T., Tsuzaki, K., Militzer, M., Ravindran, C. (eds.) THERMEC, pp. 201–206. Trans Tech Publications, Ltd., Pfäffikon (2006). doi: 10.4028/
  51. 51.
    Petryk H.: Plastic instability: Criteria and computational approaches. Arch. Comput. Methods Eng. 4(2), 111–151 (1997) doi: 10.1007/BF03020127 MathSciNetCrossRefGoogle Scholar
  52. 52.
    Pufall, R., Alpern, P., Kanert, W., Pfost, M., Smorodin, T., Stecher, M.: Wire bonding degradation induced by temperature gradients under active cyclic loading. In: 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. EuroSimE. pp. 1–5. IEEE (2009). doi: 10.1109/ESIME.2009.4938426
  53. 53.
    Regener, B., Krempaszky, C., Werner, E., Stockinger, M.: Modelling the micromorphology of heat treated Ti6Al4V forgings by means of spatial tessellations feasible for FEM analyses of microscale residual stresses. Comput. Mater. Sci. 52(1), 77–81 (2012). doi: 10.1016/j.commatsci.2011.03.035. Proceedings of the 20th International Workshop on Computational Mechanics of Materials—IWCMM 20
  54. 54.
    Ren Z.Y., Zheng Q.S.: Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mech. Mater. 36(12), 1217–1229 (2004) doi: 10.1016/j.mechmat.2003.11.002 CrossRefGoogle Scholar
  55. 55.
    Reuss A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Rice, J.R.: The localization of plastic deformation. In: Koiter, W.T. (ed.) Proceedings of the 14th IUTAM Congress on Theoretical and Applied Mechanics, pp. 207–220. North-Holland Publishing Company, Delft, Niederlande (1976)Google Scholar
  57. 57.
    Rice J.R., Rudnicki J.W.: A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16(7), 597–605 (1980) doi: 10.1016/0020-7683(80)90019-0 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Ries M., Krempaszky C., Hadler B., Werner E.: The influence of porosity on the elastoplastic behavior of high performance cast alloys. PAMM 7(1), 2150,005–2150,006 (2007) doi: 10.1002/pamm.200700159 CrossRefGoogle Scholar
  59. 59.
    Ross S.M.: Stochastic processes, 2nd edn. Wiley series in probability and statistics. Wiley, New York (1996)Google Scholar
  60. 60.
    Roters, F. (ed.): Crystal plasticity finite element methods: in materials science and engineering. Wiley, Weinheim (2010)Google Scholar
  61. 61.
    Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D., Bieler T., Raabe D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010) doi: 10.1016/j.actamat.2009.10.058 CrossRefGoogle Scholar
  62. 62.
    Roters F., Eisenlohr P., Kords C., Tjahjanto D., Diehl M., Raabe D.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012) doi: 10.1016/j.piutam.2012.03.001 CrossRefGoogle Scholar
  63. 63.
    Rudnicki J.W., Rice J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975) doi: 10.1016/0022-5096(75)90001-0 ADSCrossRefGoogle Scholar
  64. 64.
    Shen H., Lei T., Liu J.: Microscopic deformation behaviour of martensitic-ferritic dual-phase steels. Mater. Sci. Technol. 2(1), 28–33 (1986) doi: 10.1179/mst.1986.2.1.28 CrossRefGoogle Scholar
  65. 65.
    Smorodin, T.: Modellierung von Schädigungsmechanismen in Metallisierungsschichten unter schneller Temperaturwechselbelastung. No. 9 in MEMS Technology and Engineering. Der Andere Verlag (2008)Google Scholar
  66. 66.
    Smorodin, T., Stecher, M., Glavanovics, M., Wilde, J.: Power-cycling of DMOS-switches triggers thermo-mechanical failure mechanisms. In: Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, pp. 139–142 (2007). doi: 10.1109/ESSDERC.2007.4430898
  67. 67.
    Smorodin T., Wilde J., Alpern P., Stecher M.: A temperature-gradient-induced failure mechanism in metallization under fast thermal cycling. IEEE Trans. Device Mater. Reliab. 8(3), 590–599 (2008) doi: 10.1109/TDMR.2008.2002359 CrossRefGoogle Scholar
  68. 68.
    Smorodin, T., Wilde, J., Nelle, P., Lilleodden, E., Stecher, M.: Modeling of DMOS subjected to fast temperature cycle stress and improvement by a novel metallization concept. pp. 689–690. IEEE (2008). doi: 10.1109/RELPHY.2008.4558990
  69. 69.
    Snyder, D., Miller, M.: Translated Poisson-Processes. In: Random Point Processes in Time and Space, Springer Texts in Electrical Engineering, pp. 113–174. Springer, New York (1991). doi: 10.1007/978-1-4612-3166-0_3
  70. 70.
    Stroeven M., Askes H., Sluys L.J.: Numerical determination of representative volumes for granular materials. Comput. Methods Appl. Mech. Eng. 193(30–32), 3221–3238 (2004) doi: 10.1016/j.cma.2003.09.023 ADSCrossRefzbMATHGoogle Scholar
  71. 71.
    Su Y., Gurland J.: Strain partition, uniform elongation and fracture strain in dual-phase steels. Mater. Sci. Eng. 95(0), 151–165 (1987) doi: 10.1016/0025-5416(87)90507-6 CrossRefGoogle Scholar
  72. 72.
    Tandon G.P., Weng G.J.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55(1), 126 (1988) doi: 10.1115/1.3173618 ADSCrossRefGoogle Scholar
  73. 73.
    Taxer, T.: Finite element simulation of porous nickel-base superalloys on multiple length scales. Dissertation, TU München (2012)Google Scholar
  74. 74.
    Taxer T., Schwarz C., Smarsly W., Werner E.: A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-base alloy MAR-M247. Mater. Sci. Eng. A 575, 144–151 (2013) doi: 10.1016/j.msea.2013.02.067 CrossRefGoogle Scholar
  75. 75.
    Terada K., Hori M., Kyoya T., Kikuchi N.: Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37(16), 2285–2311 (2000) doi: 10.1016/S0020-7683(98)00341-2 CrossRefzbMATHGoogle Scholar
  76. 76.
    Terada K., Kikuchi N.: Microstructural design of composites using the homogenization method and digital images. Mater. Sci. Res. Int. 2(2), 65–72 (1996)Google Scholar
  77. 77.
    Thomas T.Y.: Plastic flow and fracture in solids. J. Math. Mech. 7(3), 291–322 (1958) doi: 10.1002/zamm.19620420426 MathSciNetzbMATHGoogle Scholar
  78. 78.
    Torquato S.: Effective stiffness tensor of composite media : II. applications to isotropic dispersions. J. Mech. Phys. Solids 46(8), 1411–1440 (1998) doi: 10.1016/S0022-5096(97)00083-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Torquato S.: Random Heterogeneous Materials Microstructure and Macroscopic Properties, 1st edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  80. 80.
    Trias D., Costa J., Turon A., Hurtado J.: Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater. 54(13), 3471–3484 (2006) doi: 10.1016/j.actamat.2006.03.042 CrossRefGoogle Scholar
  81. 81.
    Vinogradov V., Milton G.W.: An accelerated FFT algorithm for thermoelastic and non-linear composites. Int. J. Numer. Methods Eng. 76(11), 1678–1695 (2008) doi: 10.1002/nme.2375 MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Voigt W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wiedemann Annalen 38, 573–587 (1889)zbMATHGoogle Scholar
  83. 83.
    Voronoï G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallèlloédres primitifs. Journal für Die Reine Und Angewandte Mathematik 134, 198–287 (1908)Google Scholar
  84. 84.
    Wesenjak, R., Krempaszky, C., Werner, E.: Prediction of forming-limit curves of dual-phase steels based on a multiple length scale modelling approach considering material instabilities. Comput. Mater. Sci. (2015). doi: 10.1016/j.commatsci.2015.09.046
  85. 85.
    Zaoui A.: Continuum micromechanics: Survey. Journal of Engineering Mechanics 128(8), 808–816 (2002) doi: 10.1061/(ASCE)0733-9399(2002)128:8(808) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ewald Werner
    • 1
  • Robert Wesenjak
    • 1
  • Alexander Fillafer
    • 1
  • Felix Meier
    • 1
  • Christian Krempaszky
    • 1
  1. 1.Institute of Materials Science and Mechanics of MaterialsTechnische Universität MünchenGarchingGermany

Personalised recommendations