Continuum Mechanics and Thermodynamics

, Volume 29, Issue 4, pp 989–1016 | Cite as

Well-posedness of a two-scale model for liquid phase epitaxy with elasticity

  • Michael Kutter
  • Christian Rohde
  • Anna-Margarete Sändig
Original Article

Abstract

Epitaxy, a special form of crystal growth, is a technically relevant process for the production of thin films and layers. It can generate microstructures of different morphologies, such as steps, spirals or pyramids. These microstructures are influenced by elastic effects in the epitaxial layer. There are different epitaxial techniques, one being liquid phase epitaxy. Thereby, single particles are deposited out of a supersaturated liquid solution on a substrate where they contribute to the growth process. This article studies a two-scale model including elasticity, introduced in Eck et al. (Eur Phys J Special Topics 177:5–21, 2009) and extended in Eck et al. (2006). It consists of a macroscopic Navier–Stokes system and a macroscopic convection–diffusion equation for the transport of matter in the liquid, and a microscopic problem that combines a phase field approximation of a Burton–Cabrera–Frank model for the evolution of the epitaxial layer, a Stokes system for the fluid flow near the layer and an elasticity system for the elastic deformation of the solid film. Suitable conditions couple the single parts of the model. As the main result, existence and uniqueness of a solution are proven in suitable function spaces. Furthermore, an iterative solving procedure is proposed, which reflects, on the one hand, the strategy of the proof of the main result via fixed point arguments and, on the other hand, can be the basis for a numerical algorithm.

Keywords

Liquid phase epitaxy with elasticity Two-scale model Phase field models Existence and regularity of solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A., Fournier J.F.: Sobolev Spaces. Academic Press, Elsevier (2003)MATHGoogle Scholar
  2. 2.
    Alt H.-W.: Lineare Funktionalanalysis (5. Auflage). Springer, Berlin (2006)Google Scholar
  3. 3.
    Burton W.K., Cabrera N., Frank F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. 243, 299–358 (1951)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caginalp G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dorsch W., Christiansen S., Albrecht M., Hansson P.O., Bauser E., Strunk H.P.: Early growth stages of Ge0.85Si0.15 on Si(001) from Bi solution. Surf. Sci. 331-333, 896–901 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Chalupecky V., Eck Ch., Emmerich H.: Computation of nonlinear multiscale coupling effects in liquid phase epitaxy. Eur. Phys. J. Special Topics 149, 1–17 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Eck Ch., Emmerich H.: A two-scale model for liquid-phase epitaxy. Math. Methods Appl. Sci. 32(1), 12–40 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Eck Ch., Emmerich H.: Homogenization and two-scale models for liquid phase epitaxy. Eur. Phys. J. Special Topics 177, 5–21 (2009)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Eck, C., Emmerich, H.: Liquid-phase epitaxy with elasticity. Preprint 197, DFG SPP 1095 (2006)Google Scholar
  10. 10.
    Eck C., Kutter M., Sändig A.-M., Rohde Ch.: A two scale model for liquid phase epitaxy with elasticity: an iterative procedure. Z. Angew. Math. Mech. 93, 745–761 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Emmerich H.: Modeling elastic effects in epitaxial growth. Contin. Mech. Thermodyn. 15, 197–215 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Girault V., Raviart P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  13. 13.
    Karma A., Plapp M.: Spiral surface growth without desorption. Phys. Rev. Lett. 81, 4444 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Kutter, M.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity. Dissertation, University of Stuttgart (2015)Google Scholar
  15. 15.
    Liu F., Metiu H.: Stability and kinetics of step motion on crystal surfaces. Phys. Rev. E 49, 2601–2616 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Lo T.S., Kohn R.V.: A new approach to the continuum modeling of epitaxial growth: slope selection, coarsening and the role of uphill current. Phys. D 161, 237–257 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)CrossRefMATHGoogle Scholar
  18. 18.
    Maz’ya V., Rossmann J.: Elliptic Equations in Polyhedral Domains, vol. 162. American Mathematical Society, Mathematical Surveys and Monographs, Providence (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Otto F., Penzler P., Rätz A., Rump T., Voigt A.: A diffuse-interface approximation for step flow in epitaxial growth. Nonlinearity 17, 477–491 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
  21. 21.
    Redeker M., Eck Ch.: A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies. J. Comput. Phys. 240, 268–283 (2013)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Renardy M., Rogers R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, New York (2004)MATHGoogle Scholar
  23. 23.
    Russo G., Smereka P.: Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo. J. Comput. Phys. 214, 809–828 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shanahan L.L., Spencer B.J.: A codimension-two free boundary problem for the equilibrium shapes of a small three-dimensional island in an epitaxially strained solid film. Interfaces Free Boundaries 4, 1–25 (2002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Small M.B., Ghez R., Giess E.A.: Liquid phase epitaxy. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, Vol. 3, pp. 223–253. North-Holland, Amsterdam (1994)Google Scholar
  26. 26.
    Temam R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)MATHGoogle Scholar
  27. 27.
    Villain J.: Continuum models of crystal-growth from atomic-beams with and without desorption. J. Phys. I 1, 19–42 (1991)Google Scholar
  28. 28.
    Zeidler E.: Nonlinear Functional Analysis and its Applications II/A, Linear Monotone Operators. Springer, New York (1990)CrossRefMATHGoogle Scholar
  29. 29.
    Xiang Y.: Derivation of a continuum model for epitaxial growth with elasticity on vicinal surfaces. SIAM J. Appl. Math. 63(1), 241–258 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael Kutter
    • 1
  • Christian Rohde
    • 1
  • Anna-Margarete Sändig
    • 1
  1. 1.Institute of Applied Analysis and Numerical SimulationUniversity of StuttgartStuttgartGermany

Personalised recommendations