Continuum Mechanics and Thermodynamics

, Volume 28, Issue 4, pp 1009–1025 | Cite as

Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description

  • L. Augustins
  • R. Billardon
  • F. Hild
Original Article


One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to \({600^{\circ}{C}}\).


Flake graphite cast iron Multiscale model Constitutive model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AFNOR: Fonderie - fonte à graphite lamellaire. Norme NF EN 1561 (1997)Google Scholar
  2. 2.
    Altenbach H., Stoychev G.B., Tushtev K.N.: On elastoplastic deformation of grey cast iron. Int. J. Plast. 17, 719–736 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Aravas N., Kim K.S., Leckie F.A.: On the calculations of the stored energy of cold works. J. Eng. Mater. Tech. 112, 465–470 (1990)CrossRefGoogle Scholar
  4. 4.
    Armstrong, P., Frederick, C.: A mathematical representation of the multiaxial Bauschinger effect. Technical report RD/B/N 731, Central Electricity Generating Board (1966)Google Scholar
  5. 5.
    Augustins, L., Billardon, R., Hild, F.: A constitutive model for flake graphite cast iron automotive brake disks. Induced anisotropic damage model under complex loadings. Continuum Mech. Therm. Submitted articleGoogle Scholar
  6. 6.
    Benallal A., Billardon R., Lemaitre J.: Continuum damage mechanics and local approach to fracture: Numerical procedures. Comput. Methods Appl. Mech. Eng. 92, 141–155 (1991)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Besson, J.: Implementation of material constitutive equations in finite element codes. Accessed 30 Sept 2013
  8. 8.
    Brooks P.C., Barton D.C., Koetniyom S.: The development of a material model for cast iron that can be used for brake system analysis. Proc. Inst. Mech. Eng. Part D J. Automot. Eng. 216(5), 349–362 (2002)CrossRefGoogle Scholar
  9. 9.
    Chaboche, J.L.: Description phénoménologique de la viscoplasticité cyclique avec endommagement. Thèse d’Etat, Université Pierre et Marie Curie, Paris 6 (1978)Google Scholar
  10. 10.
    Chaboche J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)CrossRefMATHGoogle Scholar
  11. 11.
    Clough W.R., Shank H.E.: The deformation and rupture of grey cast iron. Trans. ASM 49, 241–262 (1957)Google Scholar
  12. 12.
    Constantinescu A., Charkaluk E., Lederer G., Verger L.: A computational approach to thermomechanical fatigue. Int. J. Fatigue 26, 805–818 (2004)CrossRefGoogle Scholar
  13. 13.
    Downing S.D., Socie D.F.: Stress/strain simulation model for grey cast iron. Int. J. Fatigue 142, 143–148 (1982)CrossRefGoogle Scholar
  14. 14.
    Drucker D., Prager W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math 10, 157–165 (1952)MathSciNetMATHGoogle Scholar
  15. 15.
    Germain, P.: Cours de mécanique des milieux continus. Amsterdam, Paris (1973)Google Scholar
  16. 16.
    Gilbert G.N.J.: An evaluation of the stress–strain properties of flake graphite cast iron in tension and compression. Br. Cast Iron Res. Assoc. J. 7, 745–789 (1959)Google Scholar
  17. 17.
    Haenny L., Zambelli G.: The role of the matrix graphite interaction in the tensile behavior of grey cast iron. Eng. Fract. Mech. 19, 113–121 (1984)CrossRefGoogle Scholar
  18. 18.
    Halphen B., Nguyen Q.S.: Sur les matériaux standards généralisés. Journal de mécanique 14, 39–63 (1975)MATHGoogle Scholar
  19. 19.
    Hjelm H.E.: Yield surface for grey cast iron under biaxial stress. Trans. Am. Soc. Mech. Eng. 116, 148–154 (1994)Google Scholar
  20. 20.
    Josefson B.L., Stigh U., Hjelm H.E.: A non linear kinematic hardening model for elastoplastic deformations in grey cast iron. J. Eng. Mater. Technol. 117, 145–150 (1995)CrossRefGoogle Scholar
  21. 21.
    Kachanov L.M.: Time of the rupture process under creep conditions. Izv. Akad.Nauk. SSR. Otd Tekh. Nauk. 8, 26–31 (1958)Google Scholar
  22. 22.
    Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
  23. 23.
    Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, New York (2005)Google Scholar
  24. 24.
    Marquardt D.: An algorithm for least-squares estimation of nonlinear parameters. J. Appl. Math. 11, 431–441 (1963)MathSciNetMATHGoogle Scholar
  25. 25.
    Meyersberg H.: Sur la signification du module d’élasticité de la fonte. La Fonte 14, 522 (1934)Google Scholar
  26. 26.
    Mohr, O.: Welche Umstaende bedingen die Elastizitaetsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure pp. 44–1524 (1900)Google Scholar
  27. 27.
    Ortiz M., Popov E.P.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Numer. Methods Eng. 21, 1561–1576 (1985)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Prager W.: A new method of analyzing stress and strains in work hardening plastic solids. J. Appl. Mech. 23, 493–496 (1956)MathSciNetMATHGoogle Scholar
  29. 29.
    Raghava R., Caddell R.M., Yeh G.S.Y.: The macroscopic yield behavior of polymers. J. Mat. Sci. 8, 225–232 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    Russell, E.: Finite element simulation of the microstructure of gray cast iron. Fracture Control Program Report No. 33, College of Engineering, University of Illinois (1979)Google Scholar
  31. 31.
    Simulia: Abaqus/standard output variable identifiers (section 4.2.1). Abaqus 6.10 Analysis User’s Manual (2010)Google Scholar
  32. 32.
    Z-Set: Non-linear material and structure analysis suite. Accessed 27 July 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.PSA Peugeot CitroenVelizy-Villacoublay CedexFrance
  2. 2.Messier-Bugatti-DowtyVélizy-VillacoublayFrance
  3. 3.LMT CachanENS Cachan/CNRS/University Paris SaclayCachan CedexFrance

Personalised recommendations