Continuum Mechanics and Thermodynamics

, Volume 29, Issue 4, pp 895–911 | Cite as

Modelling of grain boundary dynamics using amplitude equations

  • Claas Hüter
  • Jörg Neugebauer
  • Guillaume Boussinot
  • Bob Svendsen
  • Ulrich Prahl
  • Robert Spatschek
Original Article

Abstract

We discuss the modelling of grain boundary dynamics within an amplitude equations description, which is derived from classical density functional theory or the phase field crystal model. The relation between the conditions for periodicity of the system and coincidence site lattices at grain boundaries is investigated. Within the amplitude equations framework, we recover predictions of the geometrical model by Cahn and Taylor for coupled grain boundary motion, and find both \({\langle100\rangle}\) and \({\langle110\rangle}\) coupling. No spontaneous transition between these modes occurs due to restrictions related to the rotational invariance of the amplitude equations. Grain rotation due to coupled motion is also in agreement with theoretical predictions. Whereas linear elasticity is correctly captured by the amplitude equations model, open questions remain for the case of nonlinear deformations.

Keywords

Amplitude equations Grain rotation Coupled motion Nonlinear elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adland A., Karma A., Spatschek R., Buta D., Asta M.: Phase-field-crystal study of grain boundary premelting and shearing in bcc iron. Phys. Rev. B 87, 024110 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Adland A., Xu Y., Karma A.: Unified theoretical framework for poltcrystalline pattern evolution. Phys. Rev. Lett. 110, 265504 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Alexander A., McTague J.: Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    Bhogireddy V.S.P.K., Hüter C., Neugebauer J., Steinbach I., Karma A., Spatschek R.: Phase-field modeling of grain-boundary premelting using obstacle potentials. Phys. Rev. E 90, 012401 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Boettinger W.J., Warren J., Beckermann C., Karma A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163 (2002)CrossRefGoogle Scholar
  6. 6.
    Bollmann W.: The basic concepts of the O-lattice theory. Surf. Sci. 31, 1–11 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    Boussinot G., Hüter C., Brener E.A.: Growth of a two-phase finger in eutectics systems. Phys. Rev. E 83, 020601 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Brener E.A., Boussinot G., Hüter C., Fleck M., Pilipenko D., Spatschek R., Temkin D.E.: Pattern formation during diffusional transformations in the presence of triple junctions and elastic effects. J. Phys. Condens. Matter 21, 464106 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Brener E.A., Marchenko V.I., Müller-Krumbhaar H., Spatschek R.: Coarsening kinetics with elastic effects. Phys. Rev. Lett. 84, 4914 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Cahn J., Hilliard J.: Free energy of a nonuniform system 1: interfacial free energy. J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  11. 11.
    Cahn J., Hilliard J.: Free energy of a nonuniform system 3: nucleation in a two component incompressible fluid. J. Chem. Phys. 31, 688 (1959)ADSCrossRefGoogle Scholar
  12. 12.
    Cahn J.W.: Theory of crystal growth and interface motion in crystalline materials. Acta Metall. 8, 554 (1960)CrossRefGoogle Scholar
  13. 13.
    Cahn J.W., Mishin Y., Suzuki A.: Coupling grain boundary motion to shear deformations. Acta Mater. 54, 4953 (2006)CrossRefGoogle Scholar
  14. 14.
    Cahn J.W., Taylor J.E.: A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mat. 52, 4887 (2004)CrossRefGoogle Scholar
  15. 15.
    Chan P.Y., Goldenfeld N.: Nonlinear elasticity of the phase-field crystal model from the renormalization group. Phys. Rev. E 80, 065105 (R) (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Chen L.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113 (2002)CrossRefGoogle Scholar
  17. 17.
    Cross M.C., Hohenberg P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993). doi:10.1103/RevModPhys.65.851 ADSCrossRefGoogle Scholar
  18. 18.
    Dreyer W., Mueller W.: A study of the coarsening in tin/lead solders. Int. J. Solids Struct. 37, 3841 (2000)CrossRefMATHGoogle Scholar
  19. 19.
    Elder K.R., Grant M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Elder K.R., Katakowski M., Haataja M., Grant M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002). doi:10.1103/PhysRevLett.88.245701 ADSCrossRefGoogle Scholar
  21. 21.
    Emmerich H., Löwen H., Wittkowski R., Gruhn T., Tóth G.I., Tegze G., Gránásy L.: Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys. 61, 665 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Fix, G.J.: Phase field methods for free boundary problems. In: Free Boundary Problems: Theory and Applications, vol. 79, p. 580. Pitman Research Notes in Mathematics Series, Boston (1983)Google Scholar
  23. 23.
    Graham R.: Systematic derivation of a rotationally covariant extension of the two-dimensional newell-whitehead-segel equation. Phys. Rev. Lett. 76, 2185–2187 (1996). doi:10.1103/PhysRevLett.76.2185 ADSCrossRefGoogle Scholar
  24. 24.
    Graham R.: Erratum: Systematic derivation of a rotationally covariant extension of the two-dimensional newell-whitehead-segel equation. Phys. Rev. Lett. 80, 3888–3888 (1998). doi:10.1103/PhysRevLett.80.3888 ADSCrossRefGoogle Scholar
  25. 25.
    Grasselli M., Wu H.: Erratum: Systematic derivation of a rotationally covariant extension of the two-dimensional newell-whitehead-segel equation. Phys. Rev. Lett. 80, 3888 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Gunaratne G.H., Ouyang Q., Swinney H.L.: Pattern formation in the presence of symmetries. Phys. Rev. E 50, 2802–2820 (1994). doi:10.1103/PhysRevE.50.28 ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Harrowell P., Oxtoby D.W.: A molecular theory of crystal nucleation from the melt. J. Chem. Phys. 80(4), 1639–1646 (1984). doi:10.1063/1.446864 ADSCrossRefGoogle Scholar
  28. 28.
    Haymet A.D.J., Oxtoby D.W.: A molecular theory for the solid–liquid interface. J. Chem. Phys. 74(4), 2559–2565 (1981). doi:10.1063/1.441326 ADSCrossRefGoogle Scholar
  29. 29.
    Hillert, M.: A theory of nucleation for solid solutions. Master’s thesis, Cambridge, MA (1956)Google Scholar
  30. 30.
    Hüter C., Boussinot G., Brener E.A., Temkin D.E.: Solidification along the interface between demixed liquids in monotectic systems. Phys. Rev. E 83, 050601 (2011)CrossRefGoogle Scholar
  31. 31.
    Hüter, C., G.Boussinot, Brener, E.A., Spatschek, R.: Solidification in syntectic and monotectic systems. Phys. Rev. E (2012)Google Scholar
  32. 32.
    Hüter, C., Nguyen, C.-D., Spatschek, R.P., Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: applications of amplitude equation descriptions. Model. Simul. Mater. Sci. Eng. 22(3), 034001 (2014). doi:10.1088/0965-0393/22/3/034001
  33. 33.
    Hüter C., Twiste F., Brener E.A., Neugebauer J., Spatschek R.: Influence of short-range forces on melting along grain boundaries. Phys. Rev. B 89, 224104 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Karma, A. et al.: Phase-field methods. In: Buschow, K. (ed.) Encyclopedia of Materials Science and Technology, pp. 6873. Elsevier, Oxford (2001)Google Scholar
  35. 35.
    Kerr, W., Killough, M., Saxena, A., Swart, J., Bishop, A.R.: Role of elastic role of elastic compatibility in martensitic texture evolution. Phase Transitions 69 (1999)Google Scholar
  36. 36.
    Khachaturyan A.G.: Theory of Structural Transformation in Solids. Wiley, London (1983)Google Scholar
  37. 37.
    Laird B.B., McCoy J.D., Haymet A.D.J.: Density functional theory of freezing—analysis of crystal density. J. Chem. Phys. 87(9), 5449–5456 (1987). doi:10.1063/1.453663 ADSCrossRefGoogle Scholar
  38. 38.
    Landau L.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19 (1937)Google Scholar
  39. 39.
    Langer J.S.: Directions in Condensed Matter. World Scientific, Singapore (1986)Google Scholar
  40. 40.
    Langer, J.S.: Lectures on the theory of pattern formation. In: Chance and Matter, p. 629. Amsterdam: North Holland (1986)Google Scholar
  41. 41.
    Provatas N., Elder K.: Introduction, in Phase-Field Methods in Materials Science and Engineering. Wiley-VCH, Weinheim, Germany (2010)CrossRefGoogle Scholar
  42. 42.
    Radhakrishnan, B., Gorti, S., Nicholson, D.M., Dantzig, J.: Comparison of phase field crystal and molecular dynamics: simulations for a shrinking grain. J. Phys. Conf. Ser. 402, 012043 (2012)Google Scholar
  43. 43.
    Rubin G., Khachaturyan A.G.: Three-dimensional model of precipitation of ordered intermetallics. Acta Mater. 47, 1995 (1999)CrossRefGoogle Scholar
  44. 44.
    Shen Y., Oxtoby D.: Density functional theory of crystal growth: Lennard–Jones fluids. J. Chem. Phys. 104(11), 4233–4242 (1996). doi:10.1063/1.471234 ADSCrossRefGoogle Scholar
  45. 45.
    Shen Y., Oxtoby D.: Nucleation of Lennard–Jones fluids: a density functional approach. J. Chem. Phys. 105(15), 6517–6524 (1996). doi:10.1063/1.472461 ADSCrossRefGoogle Scholar
  46. 46.
    Singh, Y.: Density-functional theory of freezing and properties of the ordered phase. Physics Reports 207(6), 351–444 (1991). doi:10.1016/0370-1573(91)90097-6. http://www.sciencedirect.com/science/article/pii/0370157391900976
  47. 47.
    Spatschek R., Adland A., Karma A.: Structural short-range forces between solid–melt interfaces. Phys. Rev. B 97, 024109 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Spatschek R., Brener E., Karma A.: Phase field modeling of crack propagation. Philos. Mag. 91, 75 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Spatschek R., Karma A.: Amplitude equations for polycrystalline materials with interaction between composition and stress. Phys. Rev. B 81, 214201 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Spatschek R., Müller-Gugenberger C., Brener E., Nestler B.: Phase field modeling of fracture and stress-induced phase transitions. Phys. Rev. E 75, 066111 (2007)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Stefanovic P., Haataja M., Provatas N.: Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 80, 046107 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)Google Scholar
  53. 53.
    Wang N., Spatschek R., Karma A.: Multi-phase-field analysis of short-range forces between diffuse interfaces. Phys. Rev. E 81, 051601 (2010). doi:10.1103/PhysRevE.81.051601 ADSCrossRefGoogle Scholar
  54. 54.
    Wang Y., Banerjee D., Su C.C., Khachaturyan A.G.: Field kinetic model and computer simulation of precipitation of Ll(2) ordered intermetallics from fcc solid solution. Acta Mater. 46, 2983 (1998)CrossRefGoogle Scholar
  55. 55.
    Wang Y., Khachaturyan A.G.: Multi-scale phase field approach to martensitic transformation. Mater. Sci. Eng. A 438(440), 55–63 (2006)CrossRefGoogle Scholar
  56. 56.
    Wang Y., Li J.: Phase field modeling of defects and deformation. Acta Mater. 58, 1212 (2010)CrossRefGoogle Scholar
  57. 57.
    Wu K.A., Adland A., Karma A.: Phase-field-crystal model for fcc ordering. Phys. Rev. E 81, 061601 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Wu K.A., Karma A.: Phase-field crystal modeling of equilibrium bcc–liquid interfaces. Phys. Rev. B 76, 184107 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    Wu K.A., Karma A., Hoyt J.J., Asta M.: Ginzburg–Landau theory of crystalline anisotropy for bcc–liquid interfaces. Phys. Rev. B 73, 094101 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Wu K.A., Vorhees P.: Phase field crystal simulations of nanocrystalline grain growth in two dimensions. Acta Mater. 60, 407 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claas Hüter
    • 1
  • Jörg Neugebauer
    • 1
  • Guillaume Boussinot
    • 2
    • 3
  • Bob Svendsen
    • 4
    • 5
  • Ulrich Prahl
    • 6
  • Robert Spatschek
    • 1
  1. 1.Computational Materials DesignMax Planck Institut für EisenforschungDüsseldorfGermany
  2. 2.Access e.V.RWTH Aachen UniversityAachenGermany
  3. 3.Research CenterPeter-Grünberg InstituteJülichGermany
  4. 4.Microstructure Physics and Alloy DesignMax Planck Institut für EisenforschungDüsseldorfGermany
  5. 5.Material MechanicsRWTH Aachen UniversityAachenGermany
  6. 6.Department of Ferrous MetallurgyRWTH Aachen UniversityAachenGermany

Personalised recommendations