Continuum Mechanics and Thermodynamics

, Volume 28, Issue 1–2, pp 157–174

# Extension, inflation and torsion of a residually stressed circular cylindrical tube

• José Merodio
• Ray W. Ogden
Original Article

## Abstract

In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.

## Keywords

Residual stress Finite elasticity Elastic tube deformation

74B20 74E10

## References

1. 1.
Rivlin R.S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449 (1947)
2. 2.
Rivlin R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948)
3. 3.
Rivlin R.S.: A note on the torsion of an incompressible highly-elastic cylinder. Math. Proc. Camb. Philos. Soc. 45, 485–487 (1949)
4. 4.
Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–288 (1951)
5. 5.
Gent A.N., Rivlin R.S.: Experiments on the mechanics of rubber II: the torsion, inflation and extension of a tube. Proc. Phys. Soc. B. 65, 487–501 (1952)
6. 6.
Green A.E., Adkins J.E.: Large Elastic Deformations. Clarendon Press, Oxford (1970)
7. 7.
Ogden R.W., Chadwick P.: On the deformation of solid and tubular cylinders of incompressible isotropic elastic materials. J. Mech. Phys. Solids 20, 77–90 (1972)
8. 8.
Horgan C.O., Polignone D.A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain-energy. J. Elast. 37, 167–178 (1995)
9. 9.
Kirkinis E., Ogden R.W.: On extension and torsion of a compressible elastic circular cylinder. Math. Mech. Solids. 7, 373–392 (2002)
10. 10.
Polignone D.A., Horgan C.O.: Pure torsion of compressible non-linearly elastic circular cylinders. Q. Appl. Math. 49, 591–607 (1991)
11. 11.
Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)
12. 12.
Kanner L., Horgan C.O.: On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. J. Elast. 93, 39–61 (2008)
13. 13.
Horgan C.O., Murphy J.G.: Torsion of incompressible fibre-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011)
14. 14.
Horgan C.O., Murphy J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. NonLinear Mech. 47, 97–104 (2012)
15. 15.
Rivlin R.S.: Large elastic deformations of isotropic materials VI. further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949)
16. 16.
Zidi M.: Torsion and telescopic shearing of a compressible hyperelastic tube. Mech. Res. Commun. 26, 245–252 (1999)
17. 17.
Zidi M.: Finite torsion and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Eng. Sci. 38, 1487–1496 (2000)
18. 18.
Zidi M.: Finite torsion and shearing of a compressible and anisotropic tube. Int. J. NonLinear Mech. 35, 1115–1126 (2000)
19. 19.
Zidi M., Cheref M.: Finite deformations of fibre-reinforced vascular prosthesis. Mech. Res. Commun. 28, 55–62 (2001)
20. 20.
El Hamdaoui M., Merodio J., Ogden R.W., Rodríguez J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51, 1188–1196 (2014)
21. 21.
Paige, R.E.: FEA in the design process of rubber bushings. In: ABAQUS Users’ Conference. Simulia, Dassault Systèmes, Providence, RI, pp. 1–15 (2002)Google Scholar
22. 22.
Paige, R.E., Mars, W.V.: Implications of the Mullins effect on the stiffness of a pre-loaded rubber component. In: ABAQUS Users’ Conference, pp. 1–15. Simulia, Dassault Systèmes, Providence, RI (2004)Google Scholar
23. 23.
Rachev A.: Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30, 819–827 (1997)
24. 24.
Rachev A., Hayashi K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27, 459–468 (1999)
25. 25.
Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)
26. 26.
Ogden, R.W., Schulze-Bauer, C.A.J.: Phenomenological and structural aspects of the mechanical response of arteries. In: Proceedings of the ASME Mechanics in Biology Symposium, Orlando, November 2000. ASME AMD-vol. 242/BED-vol. 46, pp. 125–140. ASME, New York (2000)Google Scholar
27. 27.
Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue (Lecture notes, CISM Course on the Biomechanics of Soft Tissue in Cardiovascular Systems), pp. 65–108. CISM Courses and Lectures Series 441. Springer, Wien (2003)Google Scholar
28. 28.
Holzapfel G.A., Ogden R.W.: Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7, 787–799 (2010)
29. 29.
Zidi M.: Combined torsion, circular shearing and axial shearing of a compressible hyper elastic and prestressed tube. J. Appl. Mech. 67, 33–40 (2000)
30. 30.
Zidi M.: Azimuthal shearing and torsion of a compressible and prestressed tube. Int. J. Non-Linear Mech. 35, 209–210 (2000)
31. 31.
Zidi M.: Effects of a prestress on a reinforced, nonlinearly elastic and compressible tube subjected to combined deformations. Int. J. Solids Struct. 38, 4657–4669 (2001)
32. 32.
Zidi M., Cheref M.: Finite deformations of a hyperelastic, compressible and fibre reinforced tube. Eur. J. Mech. A/Solids 21, 971–980 (2002)
33. 33.
Hoger A.: On the residual stress possible in an elastic body with material symmetry. Arch. Ration. Mech. Anal. 88, 271–290 (1985)
34. 34.
Hoger A.: The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress. J. Elast. 33, 107–118 (1993)
35. 35.
Shams M., Destrade M., Ogden R.W.: Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48, 552–567 (2011)
36. 36.
Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)
37. 37.
Shams M., Ogden R.W.: On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA J. Appl. Math. 79, 360–376 (2014)
38. 38.
Ogden R.W., Singh B.: The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion 51, 1108–1126 (2014)
39. 39.
Hoger A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303–324 (1986)
40. 40.
Johnson B.E., Hoger A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145–165 (1993)
41. 41.
Merodio J., Ogden R.W., Rodríguez J.: The influence of residual stress on finite deformation elastic response. Int. J. NonLinear Mech. 56, 43–49 (2013)
42. 42.
Ogden, R.W.: Nonlinear elasticity with application to soft fibre-reinforced materials. In: CISM Course on Nonlinear Mechanics of Soft Fibrous Materials. CISM Courses and Lectures Series 559. Springer, Wien (2014)Google Scholar
43. 43.
Ogden R.W.: Non-linear Elastic Deformations. Dover Publications, New York (1997)Google Scholar
44. 44.
Holzapfel G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)
45. 45.
Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic Press, New York (1971)Google Scholar
46. 46.
Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)