Continuum Mechanics and Thermodynamics

, Volume 28, Issue 1–2, pp 157–174 | Cite as

Extension, inflation and torsion of a residually stressed circular cylindrical tube

Original Article

Abstract

In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.

Keywords

Residual stress Finite elasticity Elastic tube deformation 

Mathematics Subject Classification

74B20 74E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivlin R.S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449 (1947)CrossRefADSGoogle Scholar
  2. 2.
    Rivlin R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948)MathSciNetCrossRefADSMATHGoogle Scholar
  3. 3.
    Rivlin R.S.: A note on the torsion of an incompressible highly-elastic cylinder. Math. Proc. Camb. Philos. Soc. 45, 485–487 (1949)MathSciNetCrossRefADSMATHGoogle Scholar
  4. 4.
    Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–288 (1951)CrossRefADSMATHGoogle Scholar
  5. 5.
    Gent A.N., Rivlin R.S.: Experiments on the mechanics of rubber II: the torsion, inflation and extension of a tube. Proc. Phys. Soc. B. 65, 487–501 (1952)CrossRefADSGoogle Scholar
  6. 6.
    Green A.E., Adkins J.E.: Large Elastic Deformations. Clarendon Press, Oxford (1970)MATHGoogle Scholar
  7. 7.
    Ogden R.W., Chadwick P.: On the deformation of solid and tubular cylinders of incompressible isotropic elastic materials. J. Mech. Phys. Solids 20, 77–90 (1972)CrossRefADSMATHGoogle Scholar
  8. 8.
    Horgan C.O., Polignone D.A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain-energy. J. Elast. 37, 167–178 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kirkinis E., Ogden R.W.: On extension and torsion of a compressible elastic circular cylinder. Math. Mech. Solids. 7, 373–392 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Polignone D.A., Horgan C.O.: Pure torsion of compressible non-linearly elastic circular cylinders. Q. Appl. Math. 49, 591–607 (1991)MathSciNetMATHGoogle Scholar
  11. 11.
    Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kanner L., Horgan C.O.: On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. J. Elast. 93, 39–61 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Horgan C.O., Murphy J.G.: Torsion of incompressible fibre-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Horgan C.O., Murphy J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. NonLinear Mech. 47, 97–104 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Rivlin R.S.: Large elastic deformations of isotropic materials VI. further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    Zidi M.: Torsion and telescopic shearing of a compressible hyperelastic tube. Mech. Res. Commun. 26, 245–252 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Zidi M.: Finite torsion and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Eng. Sci. 38, 1487–1496 (2000)CrossRefGoogle Scholar
  18. 18.
    Zidi M.: Finite torsion and shearing of a compressible and anisotropic tube. Int. J. NonLinear Mech. 35, 1115–1126 (2000)CrossRefADSMATHGoogle Scholar
  19. 19.
    Zidi M., Cheref M.: Finite deformations of fibre-reinforced vascular prosthesis. Mech. Res. Commun. 28, 55–62 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    El Hamdaoui M., Merodio J., Ogden R.W., Rodríguez J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51, 1188–1196 (2014)CrossRefGoogle Scholar
  21. 21.
    Paige, R.E.: FEA in the design process of rubber bushings. In: ABAQUS Users’ Conference. Simulia, Dassault Systèmes, Providence, RI, pp. 1–15 (2002)Google Scholar
  22. 22.
    Paige, R.E., Mars, W.V.: Implications of the Mullins effect on the stiffness of a pre-loaded rubber component. In: ABAQUS Users’ Conference, pp. 1–15. Simulia, Dassault Systèmes, Providence, RI (2004)Google Scholar
  23. 23.
    Rachev A.: Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30, 819–827 (1997)CrossRefGoogle Scholar
  24. 24.
    Rachev A., Hayashi K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27, 459–468 (1999)CrossRefGoogle Scholar
  25. 25.
    Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ogden, R.W., Schulze-Bauer, C.A.J.: Phenomenological and structural aspects of the mechanical response of arteries. In: Proceedings of the ASME Mechanics in Biology Symposium, Orlando, November 2000. ASME AMD-vol. 242/BED-vol. 46, pp. 125–140. ASME, New York (2000)Google Scholar
  27. 27.
    Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue (Lecture notes, CISM Course on the Biomechanics of Soft Tissue in Cardiovascular Systems), pp. 65–108. CISM Courses and Lectures Series 441. Springer, Wien (2003)Google Scholar
  28. 28.
    Holzapfel G.A., Ogden R.W.: Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7, 787–799 (2010)CrossRefGoogle Scholar
  29. 29.
    Zidi M.: Combined torsion, circular shearing and axial shearing of a compressible hyper elastic and prestressed tube. J. Appl. Mech. 67, 33–40 (2000)CrossRefADSMATHGoogle Scholar
  30. 30.
    Zidi M.: Azimuthal shearing and torsion of a compressible and prestressed tube. Int. J. Non-Linear Mech. 35, 209–210 (2000)MATHGoogle Scholar
  31. 31.
    Zidi M.: Effects of a prestress on a reinforced, nonlinearly elastic and compressible tube subjected to combined deformations. Int. J. Solids Struct. 38, 4657–4669 (2001)CrossRefMATHGoogle Scholar
  32. 32.
    Zidi M., Cheref M.: Finite deformations of a hyperelastic, compressible and fibre reinforced tube. Eur. J. Mech. A/Solids 21, 971–980 (2002)CrossRefMATHGoogle Scholar
  33. 33.
    Hoger A.: On the residual stress possible in an elastic body with material symmetry. Arch. Ration. Mech. Anal. 88, 271–290 (1985)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hoger A.: The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress. J. Elast. 33, 107–118 (1993)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Shams M., Destrade M., Ogden R.W.: Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48, 552–567 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)CrossRefGoogle Scholar
  37. 37.
    Shams M., Ogden R.W.: On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA J. Appl. Math. 79, 360–376 (2014)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ogden R.W., Singh B.: The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion 51, 1108–1126 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hoger A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303–324 (1986)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Johnson B.E., Hoger A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145–165 (1993)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Merodio J., Ogden R.W., Rodríguez J.: The influence of residual stress on finite deformation elastic response. Int. J. NonLinear Mech. 56, 43–49 (2013)CrossRefADSGoogle Scholar
  42. 42.
    Ogden, R.W.: Nonlinear elasticity with application to soft fibre-reinforced materials. In: CISM Course on Nonlinear Mechanics of Soft Fibrous Materials. CISM Courses and Lectures Series 559. Springer, Wien (2014)Google Scholar
  43. 43.
    Ogden R.W.: Non-linear Elastic Deformations. Dover Publications, New York (1997)Google Scholar
  44. 44.
    Holzapfel G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)MATHGoogle Scholar
  45. 45.
    Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic Press, New York (1971)Google Scholar
  46. 46.
    Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Continuum Mechanics and Structures, E.T.S. Ingenieros Caminos, Canales y PuertosUniversidad Politécnica de MadridMadridSpain
  2. 2.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK

Personalised recommendations