Skip to main content
Log in

A model problem concerning ionic transport in microstructured solid electrolytes

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agoras M., Ponte Castañeda P.: Homogenization estimates for multi-scale nonlinear composites. Eur. J. Mech. A/Solids 30, 828–843 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Allaire G.: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G., Briane M.: Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edin. 126A, 297–342 (1996)

    Article  MathSciNet  Google Scholar 

  4. Berthier C., Gorecki W., Minier M., Armand M.B., Chabagno J.M., Rigaud P.: Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion. 11, 91–95 (1983)

    Article  Google Scholar 

  5. Bourbatache K., Millet O., Aït-Mohtar A., Amiri O.: Chloride transfer in cement-based materials. Part 1. Theoretical basis and modelling. Int. J. Numer. Anal. Meth. Geomech. 37, 1614–1627 (2012)

    Article  Google Scholar 

  6. Burba C.M., Woods L., Millar S.Y., Pallie J.: Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes. Electrochim. Acta 57, 165–171 (2011)

    Article  Google Scholar 

  7. Casado-Díaz J., Gayte I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458, 2925–2946 (2002)

    Article  ADS  MATH  Google Scholar 

  8. Ciocek M., Sannier L., Siekierski M., Golodnitsky D., Peled E., Scrosati B., Glowinkowski S., Wieczorek W.: Ion transport phenomena in polymeric electrolytes. Electrochim. Acta 53, 1409–1416 (2007)

    Article  Google Scholar 

  9. Coleman R.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Croce F., Persi L., Scrosati B., Serraino-Fiory F., Plichta E., Hendrickson M.A.: Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46, 2457–2461 (2001)

    Article  Google Scholar 

  11. Croce F., Sachetti S.L., Scrosati B.: Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sour. 162, 685–689 (2006)

    Article  Google Scholar 

  12. Doyle M., Fuller T.F., Newman J.: The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 39, 2073–2081 (1994)

    Article  Google Scholar 

  13. Fullerton-Shirey S.K., Maranas J.K.: Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42, 2142–2156 (2009)

    Article  ADS  Google Scholar 

  14. Funke K.: Solid State Ionics: from Michael Faraday to green energy the European dimension. Sci. Technol. Adv. Mater. 14, 043502 (2013)

    Article  Google Scholar 

  15. Gitelman L., Israeli M., Averbuch A., Nathan M., Schuss Z., Golodnitsky D.: Polymer geometry and Li+ conduction in poly(ethylene oxide). J. Comp. Phys. 227, 8437–8447 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Golodnitsky D., Peled E.: Stretching-induced conductivity enhancement of LiI-(PEO)-polymer electrolyte. Electrochim. Acta 45, 1431–1436 (2000)

    Article  Google Scholar 

  17. Golodnitsky D., Livshits E., Ulus A., Barkay Z., Lapides I., Peled E., Chung S.H., Greenbaum S.: Fast ion transport phenomena in oriented semicrystalline LiI-P(EO) n -based polymer electrolytes. J. Phys. Chem. A 105, 10098–10106 (2001)

    Article  Google Scholar 

  18. Gurtin M.E., Fried E., Anand L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  19. Marzantowicz M., Krok F., Dygas J.R., Florjańczyk Z., Zygadlo-Monikowska E.: The influence of phase segregation on properties of semicrystalline PEO:LiTFSI electrolytes. Solid State Ion. 179, 1670–1678 (2008)

    Article  Google Scholar 

  20. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  21. Minami T., Tatsumisago M., Wakihara M., Iwakura C., Kohjiya S., Tanaka I.: Solid state ionics for batteries. Springer, Berlin (2005)

    Book  Google Scholar 

  22. Robitaille C.D., Fauteux D.: Phase diagrams and conductivity characterization of some PEO-LiX electrolytes. J. Electrochem. Soc. 133, 315–325 (1986)

    Article  Google Scholar 

  23. Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization techniques for composite media. Lecture Notes in Physics 272. Springer, Berlin, pp. 193–278 (1987)

  24. Siekierski M., Wieczorek W., Nadara K.: Mesoscale models of conductivity in polymeric electrolytes–A comparative study. Electrochim. Acta 53, 1556–1567 (2007)

    Article  Google Scholar 

  25. Stephan A.M., Nahm K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006)

    Article  Google Scholar 

  26. Xiao Y., Bhattacharya K.: A continuum theory of deformable, semiconducting ferroelectrics. Arch. Rational Mech. Anal. 189, 59–95 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín I. Idiart.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curto Sillamoni, I.J., Idiart, M.I. A model problem concerning ionic transport in microstructured solid electrolytes. Continuum Mech. Thermodyn. 27, 941–957 (2015). https://doi.org/10.1007/s00161-014-0391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0391-4

Keywords

Navigation