Advertisement

Continuum Mechanics and Thermodynamics

, Volume 27, Issue 4–5, pp 639–658 | Cite as

Resonant phase dynamics in 0-π Sine–Gordon facets

  • Giacomo Rotoli
  • Daniela Stornaiuolo
  • Karin Cedergren
  • Antonio Leo
  • Thilo Bauch
  • Filomena Lombardi
  • Francesco Tafuri
Original Article

Abstract

A locally phase-shifted Sine–Gordon model well accounts for the phenomenology of unconventional Josephson junctions. The phase dynamics shows resonant modes similar to Fiske modes that appear both in the presence and in the absence of the external magnetic field in standard junctions. In the latter case, they are also in competition with zero field propagation of Sine–Gordon solitons, i.e., fluxons, which give rise to the so-called zero field steps in the current–voltage (I–V) of the junction. We numerically study the I–V characteristics and the resonances magnetic field patterns for some different faceting configurations, in various dissipative regimes, as a function of temperature. The simulated dynamics of the phase is analyzed for lower-order resonances. We give evidence of a nontrivial dynamics due to the interaction of propagating fluxons with localized semifluxons. Numerical results are compared with experimental outcomes obtained on high-quality high-Tc grain boundary YBCO junctions.

Keywords

Sine–Gordon equation Josephson effect Fluxons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1): 71–87 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Luongo A., Zulli D., Piccardo G.: Analytical and numerical approaches to nonlinear galloping of internally-resonant suspended cables. J. Sound Vib. 315(3): 375–393 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Luongo A., Zulli D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3): 2049–2061 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    McLaughlin D.W., Scott A.C.: Fluxon interactions. Appl. Phys. Lett. 30: 545 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    Filatrella G., Parmentier R.D., Rotoli G.: Phase locking of fluxons oscillations in long Josephson junctions with surface losses. Phys. Lett. A 148: 122 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Filatrella G., Rotoli G., Salerno M.: Suppression of chaos in Sine–Gordon system. Phys. Lett. A 178: 81 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Ustinov A.V., Cirillo M., Larsen B.H., Oboznov V.A., Carelli P., Rotoli G.: Experimental and numerical study of dynamic regimes in a discrete sine–Gordon lattice. Phys. Rev. B 51: 3081 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Petraglia A., Filatrella G., Rotoli G.: Self-field effects in Josephson junctions arrays. Phys. Rev. B 53: 2732 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    De Leo C., Rotoli G., Nielsen A., Barbara P., Lobb C.: Mutual inductance route to paramagnetic Meissner effect in 2D arrays of Josephson junctions. Phys. Rev. B 64: 144518 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Filatrella G., Rotoli G., Grombech-Jensen N., Pedersen N.F., Parmentier R.D.: Model studies of long Josephson junction arrays coupled to high-Q resonator. J. Appl. Phys. 72: 3179 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Rotoli G., De Leo C., Ghigo G., Gozzelino L., Camerlingo C.: Josephson junction network as a tool to simulate intergrain superconducting channels in YBCO films. Int. J. Phys. B 14: 3068 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    De Leo C., Rotoli G.: Magnetization of multiply connected superconductors with and without π-junctions loops. Supercond. Sci. Technol. 15: 1716 (2002)ADSGoogle Scholar
  13. 13.
    Pignataro M., Luongo A.: Asymmetric interactive buckling of thin-walled columns with initial imperfections. Thin-Walled Struct. 5(5): 365–382 (1987)CrossRefGoogle Scholar
  14. 14.
    Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3): 133–156 (2001)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Belyakov A.O., Seyranian A.P., Luongo A.: Dynamics of the pendulum with periodically varying length. Physica D Nonlinear Phenom. 238(16): 1589–1597 (2009)MATHADSCrossRefGoogle Scholar
  16. 16.
    Kirtley J.R., Moler K.A., Scalapino D.J.: Spontaneous flux and magnetic interference patterns in 0-π. Josephson junctions. Phys. Rev. B 56: 886 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Rotoli G.: Induced paramagnetic states by localized π-loops in grain boundaries. Phys. Rev. B 68: 052505 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Goldobin E., Koelle D., Kleiner R.: Ground states and bias-current-induced rearrangement of semifluxons in 0-π long Josephson junctions. Phys. Rev. B 67: 224515 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Smilde H.J.H., Ariando B., Blank D.H.A., Gerritsma G.J., Hilgenkamp H., Rogalla H.: d-waveinduced Josephson current counterflow in YBa2Cu3O7/Nb zigzag junctions. Phys. Rev. Lett. 88: 057004 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Hilgenkamp H., Ariando H.J.H.S., Blank D.H.A., Rijnders G., Rogalla H., Kirtley J.R., Tsuei C.C.: Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422: 50 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Goldobin E., Stefanakis N., Koelle D., Kleiner R.: Fluxon-semifluxon interaction in an annular long Josephson 0-π junction. Phys. Rev. B 70: 094520 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Rotoli G.: Unconventional Josephson junction arrays for qubit devices. IEEE Trans. Supercond. 15: 852 (2005)CrossRefGoogle Scholar
  23. 23.
    Stefanakis N.: Resonant flux motion and I–V characteristics in frustrated Josephson junctions. Phys. Rev. B 66: 214524 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Goldobin E., Sterck A., Gaber T., Koelle D., Kleiner R.: Dynamics of semifluxons in Nb long Josephson 0-π junctions. Phys. Rev. Lett. 92: 057005 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Lazarides N.: Critical current and fluxon dynamics in overdamped 0-π Josephson junctions. Phys. Rev. B 69: 212501 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Stornaiuolo D., Rotoli G., Cedergren K., Born D., Bauch T., Lombardi F., Tafuri F.: Submicron YBaCuO biepitaxial Josephson junctions: d-wave effects and phase dynamics. J. Appl. Phys. 107: 113901 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Tafuri F., Kirtley J.R.: Weak links in high critical temperature superconductors. Rep. Prog. Phys. 68: 2573 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Hilgenkamp H., Mannhart J.: Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74: 485 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Cedergren K., Kirtley J.R., Bauch T., Rotoli G., Troeman A., Hilgenkamp H., Tafuri F., Lombardi F.: Interplay between static and dynamic properties of semi-fluxons in YBaCuO Josephson junctions. Phys. Rev. Lett. 104: 177003 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Salerno M., Samuelsen M.R., Filatrella G., Pagano S., Parmentier R.D.: Microwave phase locking of Josephson-junction fluxon oscillators. Phys. Rev. B 41: 6641 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    Nappi C., Lisitskiy M.P., Rotoli G., Cristiano R., Barone A.: New fluxon resonant mechanism in annular Josephson tunnel structures. Phys. Rev. Lett. 93: 187001 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Fulton T.A., Dynes R.C.: Single vortex propagation in Josephson tunnel junctions. Solid State Commun. 12: 57 (1973)ADSCrossRefGoogle Scholar
  33. 33.
    Kulik I.O., Zh. Eksp. Teor. Fiz., Theory of “steps” of voltage-current characteristic of the Josephson tunnel current, Pisma Red. 2, 134 (1965) [JETP Lett. 2, 84 (1965)].Google Scholar
  34. 34.
    Ernè S.N., Ferrigno A., Parmentier R.D.: Fluxon propagation and Fiske steps in long Josephson tunnel junctions. Phys. Rev. B 27: 5440 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    Olsen O.H., Samuelsen M.R.: Fluxon propagation in long Josephson junctions with external magnetic field. J. Appl. Phys. 52: 6247 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    Cirillo M., Gronbech-Jensen N., Samuelsen M., Salerno M., Verona Rinati G.: Fiske modes and Eck steps in long Josephson junctions: theory and experiments. Phys. Rev. B 58: 12377 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Tinkham M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)Google Scholar
  38. 38.
    Pfeiffer J., Kemmler M., Koelle D., Kleiner R., Goldobin E., Weides M., Feofanov A.K., Lisenfeld J., Ustinov A.V.: Static and dynamic properties of 0, π, and 0-π ferromagnetic Josephson tunnel junctions. Phys. Rev. B 77: 214506 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    The criterium is αl < π, where best HTC junctions have αl ~ 4. This implies an Eck step and/or Flux-Flow dynamics rather than a resonant dynamicsGoogle Scholar
  40. 40.
    Barone A., Paterno G.: Physics and Applications of Josephson Effect. Wiley, New York (1982)CrossRefGoogle Scholar
  41. 41.
    Goldobin E., Vogel K., Crasser O., Walser R., Schleich W.P., Koelle D., Kleiner R.: Quantum tunneling of semifluxons in a 0-π-0 long Josephson junction. Phys. Rev. B 72: 054527 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    The length scaling is given by the simple formula \({a_j=\bar{a}_j\sqrt{\frac{J_j}{\bar{J}_j}}}\) where J j is the critical current density in the model facet and j̄j the critical current density in the original facet. Our assumption simply set J j = J 0 = 1Google Scholar
  43. 43.
    Carcaterra, A., Akay, A.: Dissipation in a finite-size bath. Phys. Rev. E 84 (2011)Google Scholar
  44. 44.
    Bauch T., Lombardi F., Tafuri F., Barone A., Rotoli G., Delsing P., Cleason T.: Macroscopic quantum tunneling in d-wave YBCO Josephson junctions. Phys. Rev. Lett. 94: 087003 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Bauch T., Lindstrom T., Tafuri F., Rotoli G., Delsing P., Cleason T., Lombardi F.: Quantum dynamics of a d-wave Josephson junction. Science 311: 56 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Rotoli G.: Magnetization states in annular Josephson junction π-arrays in contributed book Research Signpost: New Developments in Josephson Junctions Research ISBN 978-81-7895-328-1, S. A. Sergeenkov ed., 2008Google Scholar
  47. 47.
    The presence of a ZFS of order k is a close consequence of the junction capacity to accommodate k propagating fluxons. As the spatial extent of a fluxon is roughly 1 in normalized units, when k is of the order of l fluxon dynamics become problematic and normally dissipation will inhibit solitonic dynamics even before this limit. Indeed in conventional junctions it is difficult to observe more than 3 ZFS for a junction normalized length l≃5. Other effects came into play like “surface” dissipation which make the ZFS soon unstable (see S. Pagano, PhD thesis, The Technical University of Denmark 1986)Google Scholar
  48. 48.
    Nappi C., Sarnelli E., Adamo M., Navacerrada M.A.: Fiske modes in 0-π Josephson junctions. Phys. Rev. B 74: 144504 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    By “stable” here we mean that pattern is “accessible” by using the standard procedure to sweep bias current along the resonance. A low order step pattern could be difficult to be reached by sweeping the bias current just below the resonance because, at low voltage values, the phase can very easily return in the zero voltage state on the critical current. In some cases only by chance it is possible to reach these resonances quickly going up in bias current sweep. In nonlinear dynamics terms their “basin of attraction” is very small and could be bypassed by other larger attractors. Moreover, here we search this stability not just for one resonance, but for its full dependence on magnetic fieldGoogle Scholar
  50. 50.
    The complexity of the resonance pattern is increasing with N. The number of resonance pattern peaks at order k = 1 increases from 7 to 11 going from N = 4 to N = 6. The same happens for order k = 2, but in this case the increase is of just one peak per facet units, i.e., we go from 4 at N = 2 to 7 at N = 5. For the order k = 3 there is a similar increase of peak number, but the exact law is less clear because in some case, e.g., for N = 5 the large peaks may be cover the small peaks between themGoogle Scholar
  51. 51.
    Niemeyer, J.: Josephson voltage standards. In: Seeber, B. (ed.) Handbook of Applied Superconductivity, pp. 1813–1834. Institute of Physics Publishing, Bristol (1998)Google Scholar
  52. 52.
    Kleiner R., Koelle D., Ludwig F., Clarke J.: Superconducting quantum interference devices: state of the art and applications. Proc. IEEE 92(10): 1534 (2004)CrossRefGoogle Scholar
  53. 53.
    Zmuidzinas J., Richards P.L.: Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proc. IEEE 92: 1597 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Barbara P., Cawthorne A.B., Shitov S.V., Lobb C.J.: Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 82(9): 1963 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    Tsuei C.C., Kirtley J.R.: Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72: 969 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    Blatter G., Geshkenbein V.B., Ioffe L.B.: Design aspects of superconducting-phase quantum bits. Phys. Rev. B 63: 174511 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Tsuei C.C., Kirtley J.R., Chi C.C., Yu-Jahnes L.S., Gupta A., Shaw T., Sun J.Z., Ketchen M.B.: Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7. Phys. Rev. Lett. 73: 593–596 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    van Harlingen D.J.: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors. Evidence for \({d_{x^{2}-y^{2}}}\) symmetry. Rev. Mod. Phys. 67: 515 (1995)ADSCrossRefGoogle Scholar
  59. 59.
    Longobardi L., Massarotti D., Stornaiuolo D., Galletti L., Rotoli G., Lombardi F., Tafuri F.: Direct transition from quantum escape to phase diffusion regime in YBaCuO biepitaxial Josephson Junctions. Phys. Rev. Lett. 109: 050601 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Massarotti D., Longobardi L., Galletti L., Stornaiuolo D., Rotoli G., Tafuri F.: Macroscopic quantum tunneling and retrapping processes in moderately damped YBaCuO Josephson Junctions. Low Temp. Phys./Fizika Nizkikh Temperatur 39: 378 (2013)CrossRefGoogle Scholar
  61. 61.
    Tafuri F., Massarotti D., Galletti L., Stornaiuolo D., Montemurro D., Longobardi L., Lucignano P., Rotoli G., Pepe G.P., Tagliacozzo A., Lombardi F.: Recent achievements on the physics of high-TC superconductor Josephson junctions: background, perspectives and inspiration. J. Supercond. Nov. Magn. 26: 21 (2013)CrossRefGoogle Scholar
  62. 62.
    Parlato, L., Arpaia, R., De Lisio, C., Miletto Granozio, F., Pepe, G.P., Perna, P., Pagliarulo, V., Bonavolont, C., Radovic, M., Wang, Y., Sobolewski, R., Scotti di Uccio, U.: Time-resolved optical response of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 proximitized bilayers. Phys. Rev. B 87, 134514 (2013)Google Scholar
  63. 63.
    Lombardi F., Tafuri F., Ricci F., Miletto Granozio F., Barone A., Testa G., Sarnelli E., Kirtley J.R., Tsuei C.C.: Intrinsic d-Wave effects in YBa2Cu3O7-grain boundary Josephson junctions. Phys. Rev. Lett. 89: 207001 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    Miletto Granozio F., Scottidi Uccio U., Lombardi F., Ricci F., Bevilacqua F., Ausanio G., Carillo F., Tafuri F.: Structure and properties of a class of CeO2-based biepitaxial YBa2Cu3O7-Josephson junctions. Phys. Rev. B 67: 184506 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    We have assumed a mean values for London length λL of 300 nm, which is a value compatible with a GB angle of 20ºGoogle Scholar
  66. 66.
    Papari G., Carillo F., Stornaiuolo D., Longobardi L., Beltram F., Tafuri F.: High critical current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25: 035011 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Carillo F., Papari G., Stornaiuolo D., Born D., Montemurro D., Pingue P., Beltram F., Tafuri F.: Little–Parks effect in single nanoscale YBa2Cu3O6+x rings. Phys. Rev. B 81: 054505 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Nawaz S., Arpaia R., Lombardi F., Bauch T.: Microwave response of superconducting YBa2Cu3O7-nanowire bridges sustaining the critical depairing current: evidence of Josephson-like behavior. Phys. Rev. Lett. 110: 167004 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    Scheible D.V., Blick R.H.: Silicon nano-pillars for mechanical single electron transport. Appl. Phys. Lett. 84: 4632 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    Scorrano A., Carcaterra A.: Semi-classical modelling of nanomechanical transistors. Mech. Syst. Signal Process. 39: 489–514 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    Scorrano A., Carcaterra A.: Investigation of nanomechanical transistors. Meccanica 48(8): 1883–1892 (2013)MATHCrossRefGoogle Scholar
  72. 72.
    Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM 93(12): 914–927 (2013)MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids, 1081286512474016, first published on March 4, 2013Google Scholar
  74. 74.
    Madeo, A., Gavrilyuk, S.: Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A/Solids 29(5), 897–910Google Scholar
  75. 75.
    Alibert J.J., Seppecher P., Dell’isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1): 51–73 (2003)MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Pepe G.P., Peluso G., Valentino M., Barone A., Parlato L., Esposito E., Granata C., Russo M., De Leo C., Rotoli G.: Pulse-induced switches in a Josephson tunnel stacked device. Appl. Phys. Lett. 79: 2771 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    Dell’Isola F., Vidoli S.: Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Arch. Appl. Mech. 68(9): 626–636 (1998)MATHADSCrossRefGoogle Scholar
  78. 78.
    Andreaus U., Dell’isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5): 625–659 (2004)MATHCrossRefGoogle Scholar
  79. 79.
    Stornaiuolo D., Rotoli G., Massarotti D., Carillo F., Longobardi L., Beltram F., Tafuri F.: Resolving the effects of frequency-dependent damping and quantum phase diffusion in YBa2Cu3O7-x Josephson junctions. Phys. Rev. B 87: 134517 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giacomo Rotoli
    • 1
  • Daniela Stornaiuolo
    • 2
  • Karin Cedergren
    • 3
  • Antonio Leo
    • 4
  • Thilo Bauch
    • 3
  • Filomena Lombardi
    • 3
  • Francesco Tafuri
    • 5
  1. 1.Dipartimento di Ingegneria Industriale edell’InformazioneSeconda Università di NapoliAversaItaly
  2. 2.CNR-SPIN e Dipartimento di Scienze FisicheUniversitá di Napoli “Federico II”NaplesItaly
  3. 3.Department of Microelectronics and NanoscienceChalmers University of Technology and Göteborg UniversityGōteborgSweden
  4. 4.CNR-SPIN and Dipartimento di Fisica E R CaianielloUniversitá di SalernoFiscianoItaly
  5. 5.CNR-SPIN and Dipartimento di Ingegneria Industriale edell’InformazioneSeconda Università di NapoliAversaItaly

Personalised recommendations