Skip to main content

Modeling of an initial stage of bone fracture healing

Abstract

In case of the secondary bone fracture healing, four characteristic steps are often distinguished. The first stage, hematoma and clot formation, which is an object of our study, is important because it prepares the environment for the following stages. In this work, a new mathematical model describing basic effects present short after the injury is proposed. The main idea is based on the assumption that blood leaking from the ruptured blood vessels propagates into a poroelastic saturated tissue close to the fracture and mixes with the interstitial liquid present in pores. After certain time period from the first contact with surrounding tissue, the solidification of blood in the fluid mixture starts. This results in clot formation. By assuming the time necessary to initiate solidification and critical saturation of blood in the mixture, the shape and the structure of blood clot could be determined. In numerical example, proposed mathematical formulas were used to study the size of the gap between fractured parts and its effect in blood clot formation.

References

  1. 1

    Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  2. 2

    Blaž M., Vane A.: Optimal mechanical environment of the healing bone fracture/osteotomy. Int. Orthop. 36, 689–695 (2012)

    Article  Google Scholar 

  3. 3

    Carter D.R., Beaupré G.S., Giori N.J. et al.: Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355, 41–55 (1998)

    Article  Google Scholar 

  4. 4

    Checa S., Prendergast P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37, 129–145 (2009)

    Article  Google Scholar 

  5. 5

    Chen, G., Niemeyer, F., Wehner, T., et al.: Simulation of the nutrient supply in fracture healing. J. Biomech. (2009). doi:10.1016/j.jbiomech.2009.07.010

  6. 6

    Claes L.E., Wilke H.J., Augat P. et al.: Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. 10(5), 227–234 (1995)

    Article  Google Scholar 

  7. 7

    Claes L.E., Heigele C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999)

    Article  Google Scholar 

  8. 8

    Claes L.E., Eckert K., Augat P.: The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch. Surg. 388(5), 316–322 (2003)

    Article  Google Scholar 

  9. 9

    Dell’Isola F., Batra R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997)

    MATH  MathSciNet  Article  Google Scholar 

  10. 10

    Dell’isola F., Romano A.: A phenomenological approach to phase transition in classical field theory. Int. J. Eng. Sci. 25(11–12), 1469–1475 (1987)

    MATH  MathSciNet  Article  Google Scholar 

  11. 11

    Dell’isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)

    MATH  MathSciNet  Article  Google Scholar 

  12. 12

    Dell’Isola, F., Hutter, K.: What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? Proc. R. Soc. A Math. Phys. 454, 1169–1195 (1998)

  13. 13

    Dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    MATH  ADS  Article  Google Scholar 

  14. 14

    Dietrich L., Lekszycki T., Lekszycki T.: Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech. 126(1-4), 153–167 (1998)

    MATH  Article  Google Scholar 

  15. 15

    Dimitriou R., Tsiridis E., Giannoudis P.V.: Current concepts of molecular aspects of bone healing. Injury 36(12), 1392–1404 (2005)

    Article  Google Scholar 

  16. 16

    Doblaré M., García J.M., Gómez M.J.: Modeling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71, 1809–1840 (2004)

    Article  Google Scholar 

  17. 17

    Einhorn T.A.: The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355(Suppl), S7–S21 (1998)

    Article  Google Scholar 

  18. 18

    Federico S., Grillo A., Giaquinta G., Herzog W.: A semi-analytical solution for the confined compression test of hydrated soft tissue. Meccanica 44, 197–205 (2009). doi:10.1007/s11012-008-9165-z

    MATH  Article  Google Scholar 

  19. 19

    Frischmuth K., Kosiński W., Lekszycki T.: Free Vibrations of Finite-Memory Material Beams. Int. J. Eng. Sci. 31(3), 385–395 (1993)

    MATH  Article  Google Scholar 

  20. 20

    García J.M., Kuiper J.H., Gómez M.J. et al.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40(7), 1467–1476 (2007)

    Article  Google Scholar 

  21. 21

    Geris, L., Sloten, V.J., Oosterwyck, H.V.: Mathematical modeling of fracture healing: coupling between mechanics, angiogenesis and osteogenesis. ECIFMBE 2008, IFMBE Proceedings 22, pp. 2651–2654 (2009)

  22. 22

    Gómez M.J., García J.M., Kuiper J.H. et al.: Influence of fracture size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235(1), 105–119 (2005)

    Article  Google Scholar 

  23. 23

    González, L.A., Gómez, M.J., Doblaré, M., et al.: Influence of the frequency of the external mechanical stimulus on bone healing: a computational study. Med. Eng. Phys. (2010). doi:10.1016/j.medengphy.2010.01.010

  24. 24

    Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47, 388–401 (2012)

    ADS  Article  Google Scholar 

  25. 25

    Hollinger J., Wong M.E.K.: The integrated process of hard tissue regeneration with special emphasis on fracture healing. Oral Surg. Med. Oral Pathol. 82, 594–606 (1996)

    Article  Google Scholar 

  26. 26

    Lacroix D., Prendergast P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002)

    Article  Google Scholar 

  27. 27

    Lekszycki T., Mróz Z.: Variational Principles on Analysis and Synthesis of Elastic Systems with Damping. Solid Mech. Arch. 14(3–4), 181–201 (1989)

    MathSciNet  Google Scholar 

  28. 28

    Lekszycki T.: Modeling of bone adaptation based on an optimal response hypothesis. Meccanica 37, 343–354 (2002)

    MATH  MathSciNet  Article  Google Scholar 

  29. 29

    Lekszycki T., Dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Z. Angew. Math. Mech. 92(6), 426–444 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  30. 30

    Luongo, A.: Perturbation methods for nonlinear autonomous discrete-time dynamical systems. Nonlinear Dyn. 10(4), 317–331 (1996)

  31. 31

    Luongo A., Paolone A.: On the reconstruction problem in the multiple time-scale method. Nonlinear Dyn. 19(2), 133–156 (1999)

    MATH  MathSciNet  Article  Google Scholar 

  32. 32

    Luongo, A., Di Egidio, A., Paolone, A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82(31–32), 2705–2722 (2004)

  33. 33

    Marsell R., Einhorn T.A.: The biology of fracture healing. Injury 42(6), 551–555 (2011)

    Article  Google Scholar 

  34. 34

    Madeo A., George D., Lekszycki T., Nierenberger M., Rémond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling. CR Mec. 340(8), 575–589 (2012)

    ADS  Article  Google Scholar 

  35. 35

    Manjubala, I., Liu, Y., Epari, D.R., et al.: Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone (2009). doi:10.1016/j.bone.2009.04.249

  36. 36

    Mavčič, B., Antolič, V.: Optimal mechanical environment of the healing bone fracture/osteotomy. Int. Orthop. (2012). doi:10.1007/s00264-012-1487-8

  37. 37

    Nagel T., Kelly D.J.: Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech. Model Mechanobiol. 9(3), 359–372 (2010)

    Article  Google Scholar 

  38. 38

    Phillips A.M.: Overview of the fracture healing cascade. Injury 36(3), S5–7 (2005)

    Article  Google Scholar 

  39. 39

    Prendergast P.J., Huiskes R., Soballe K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 6, 539–548 (1997)

    Article  Google Scholar 

  40. 40

    Sandino, C., Checa, S., Prendergast, P.J., et al.: Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials (2010). doi:10.1016/j.biomaterials.2009.11.063

  41. 41

    Sciarra,G., Dell’Isola, F.K., Hutter: A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Therm. 13(5), 287–306 (2001)

  42. 42

    Vetter A., Witt F., Sander O. et al.: The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech. Model Mechanobiol. 11(1–2), 147–160 (2012)

    Article  Google Scholar 

  43. 43

    Webb J.C.J., Tricker J.: A review of fracture healing. Curr. Orthop. 14, 457–463 (2000)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lekszycki.

Additional information

Communicated by Francesco dell'Isola and Giuseppe Piccardo.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Lekszycki, T. Modeling of an initial stage of bone fracture healing. Continuum Mech. Thermodyn. 27, 851–859 (2015). https://doi.org/10.1007/s00161-014-0380-7

Download citation

Keywords

  • Blood clot
  • Bone fracture
  • Healing
  • Mathematical modeling
  • Tissue regeneration