Continuum Mechanics and Thermodynamics

, Volume 27, Issue 4–5, pp 659–684 | Cite as

New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper

  • Alberto M. Bersani
  • Enrico Bersani
  • Guido Dell’Acqua
  • Morten G. Pedersen
Original Article


One century after the seminal work by Leonor Michaelis and Maud Menten devoted to the theoretical study of the enzymatic reactions, in this paper, we give an overview of the most recent trends concerning the mathematical modeling of several enzymatic mechanisms, focusing on its asymptotic analysis, which needs the use of advanced mathematical tools, such as center manifold theory, normal forms, and bifurcation theory. Moreover, we present some perspectives, linking the models here presented with similar models, arising from different research fields.

Mathematics Subject Classification (2010)

92C40 92C45 41A99 


Michaelis–Menten kinetics Quasi-steady-state approximations Asymptotic expansions Singular perturbations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albe K.R., Butler M.H., Wright B.E.: Cellular concentration of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990)Google Scholar
  2. 2.
    Alberty R.A.: Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements. J. Theor. Biol. 254, 156–163 (2008)MathSciNetGoogle Scholar
  3. 3.
    Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: Piezo-ElectroMechanical (PEM) Kirchhoff–Love plates. Eur. J. Mech. A Solids 23, 689–702 (2004)zbMATHGoogle Scholar
  4. 4.
    Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83, 1236–1250 (2005)Google Scholar
  5. 5.
    Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10, 625–659 (2004)zbMATHGoogle Scholar
  6. 6.
    Babskii V.G., Yu Zhukov M., Yudovich V.I.: Mathematical Theory of Electrophoresis. Consultants Bureau, New York (1989)Google Scholar
  7. 7.
    Barik D., Paul M.R., Baumann W.T., Cao Y., Tyson J.J.: Stochastic simulation of enzyme-catalized reactions with disparate time scales. Biophys. J. 95, 3563–3574 (2008)ADSGoogle Scholar
  8. 8.
    Batra R.C., dell’Isola F., Vidoli S., Vigilante D.: Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int. J. Solids Struct. 42, 3115–3132 (2005)zbMATHGoogle Scholar
  9. 9.
    Bender C.M., Orszag S.A.: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer, New York (1999)zbMATHGoogle Scholar
  10. 10.
    Bersani, A.M., Bersani, E., Mastroeni, L.: Deterministic and stochastic models of enzymatic networks—applications to pharmaceutical research. Comput. Math. Appl., special issue: Tadei, R., Bellomo, N. (eds.) “Modeling and Computational Methods in Genomic Sciences”, vol. 55, pp. 879–888 (2008)Google Scholar
  11. 11.
    Bersani A.M., Bersani E., Mastroeni L.: Modeling the action of drugs on cellular enzymes by means of optimal control techniques. J. Math. Chem. 49, 776–795 (2011)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Bersani A.M., Carlini E., Lanucara P., Rorro M., Ruggiero V.: Application of optimal control techniques and advances computing to the study of enzyme kinetics. Math. Comput. Simul. (MATCOM) 81, 705–716 (2010)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Bersani A.M., Dell’Acqua G.: Asymptotic expansions in enzyme reactions with high enzyme concentrations. Math. Methods Appl. Sci. 34, 1954–1960 (2011)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Bersani A.M., Dell’Acqua G.: Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation?. J. Math. Chem. 50, 335–344 (2012)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Bersani, A.M., Dell’Acqua, G., Tomassetti, G.: On stationary states in the double phosphorylation–dephosphorylation cycle. In: AIP Conference Proceedings 1389, Numerical Analysis and Applied Mathematics ICNAAM, Halkidiki (Greece), 19–25 September 2011, pp. 1208–1211 (2011)Google Scholar
  16. 16.
    Bisswanger H.: Enzyme Kinetics. Principles and Methods. Wiley-VCH, Weinheim (2002)Google Scholar
  17. 17.
    Blütghen N.: Sequestration shapes the response of signal transduction cascades. IUMBM Life 58, 659–663 (2006)Google Scholar
  18. 18.
    Blütghen N., Bruggermann F.J., Legewie S., Herzel H., Westerhoff H.V., Kholodenko B.N.: Effects of sequestration on signal transduction cascades. FEBS J. 273, 895–906 (2006)Google Scholar
  19. 19.
    Bodenstein M.Z.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 329–397 (1913)Google Scholar
  20. 20.
    Borghans J., de Boer R., Segel L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)zbMATHGoogle Scholar
  21. 21.
    Briggs G.E., Haldane J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)Google Scholar
  22. 22.
    Carr J.: Applications of Centre Manifold Theory, Applied Mathematics Sciences, vol. 35. Springer, New York (1981)Google Scholar
  23. 23.
    Cazzani A., Rovati M.: Sensitivity analysis and optimum design of elastic–plastic structural systems. Meccanica 26, 173–178 (1991)zbMATHGoogle Scholar
  24. 24.
    Cazzani A., Garusi E., Tralli A., Atluri S.N.: A four-node hybrid assumed-strain finite element for laminated composite plates. Comput. Mater. Contin. 2, 23–38 (2005)zbMATHGoogle Scholar
  25. 25.
    Chapman D.L., Underhill L.K.: The interaction of chlorine and hydrogen. The influence of mass. J. Chem. Soc. Trans. 103, 496–508 (1913)Google Scholar
  26. 26.
    Chen L.Y., Goldenfeld N.D., Oono Y.: The renormalization group and singular perturbations: multiple-scales, boundary layers and reductive perturbation theory. Phys. Rev. E 54, 376–394 (1996)ADSGoogle Scholar
  27. 27.
    Chickarmane V., Kholodenko B.N., Sauro H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol. 244, 68–76 (2006)MathSciNetGoogle Scholar
  28. 28.
    Cho, K.-H., Shin, S.-Y., Kim, H.W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.). Computational Methods in Systems Biology, First International Workshop, CMSB 2003, Rovereto, Italy, February 24–26, 2003, Proceedings, Lecture Notes in Computer Science 2602. Springer, New York (2003)Google Scholar
  29. 29.
    Ciliberto A., Capuani F., Tyson J.J.: Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, 463–472 (2007)MathSciNetGoogle Scholar
  30. 30.
    Contrafatto L., Cuomo M.: A framework of elasticplastic damaging model for concrete under multiaxial stress states. Int. J. Plast. 22, 2272–2300 (2006)zbMATHGoogle Scholar
  31. 31.
    Contrafatto L., Cuomo M.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. Int. J. Numer. Methods Eng. 63, 1089–1125 (2005)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Cornish-Bowden A.: Fundamentals of Enzyme Kinetics, 3rd edn. Portland Press, London (2004)Google Scholar
  34. 34.
    Cuomo M., Contrafatto L.: Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. Int J. Solids Struct. 37, 3935–3964 (2000)zbMATHGoogle Scholar
  35. 35.
    Cuomo M., Ventura G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian regularization. Math. Comput. Model. 28, 185–204 (1998)zbMATHGoogle Scholar
  36. 36.
    Dell’Acqua G., Bersani A.M.: A perturbation solution of Michaelis–Menten kinetics in a “total” framework. J. Math. Chem. 50, 1136–1148 (2012)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Dell’Acqua G., Bersani A.M.: Quasi-steady state approximations and multistability in the double phosphorylation-dephosphorylation cycle. Commun. Comput. Inf. Sci. 273, 155–173 (2012)Google Scholar
  38. 38.
    Dell’Acqua, G., Bersani, A.M.: Bistability and the complex depletion paradox in the double phosphorylation–dephosphorylation cycle. In: Proceedings BIOINFORMATICS 2011, pp. 55–65 (2012)Google Scholar
  39. 39.
    dell’Isola F.: Linear growth of a liquid droplet divided from its vapour by a “soap bubble”-like fluid interface. Int. J. Eng. Sci. 27, 1053–1067 (1989)zbMATHMathSciNetGoogle Scholar
  40. 40.
    dell’Isola F., Porfiri M., Vidoli S.: Piezo-electromechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. Comptes Rendus Mec. 331, 69–76 (2003)zbMATHADSGoogle Scholar
  41. 41.
    dell’Isola F., Rosa L., Wozniak C.: Dynamics of solids with micro periodic nonconnected fluid inclusions. Arch. Appl. Mech. 67, 215–228 (1997)zbMATHGoogle Scholar
  42. 42.
    dell’Isola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)zbMATHMathSciNetGoogle Scholar
  43. 43.
    dell’Isola F., Wozniak C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83, 175–189 (1997)Google Scholar
  44. 44.
    dell’Isola F., Wozniak C.: On continuum modelling the interphase layers in certain two-phase elastic solids. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 77, 519–526 (1997)zbMATHMathSciNetADSGoogle Scholar
  45. 45.
    Deville R.E.L., Harkin A., Holzer M., Josic K., Kaper T.J.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D Nonlinear Phenom. 237, 1029–1052 (2008)zbMATHMathSciNetADSGoogle Scholar
  46. 46.
    Dingee J.W., Anton A.B.: A new perturbation solution to the Michaelis–Menten problem. AIChE J. 54, 1344–1357 (2008)Google Scholar
  47. 47.
    Dvořák I., Šiška J.: Analysis of metabolic systems with complex slow and fast dynamics. Bull. Math. Biol. 51, 255–274 (1989)zbMATHGoogle Scholar
  48. 48.
    Eremeev V.A., Freidin A.B., Sharipova L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Dokl. Phys. 48, 359–363 (2003)MathSciNetADSGoogle Scholar
  49. 49.
    Eremeyev V.A., Pietraszkiewicz W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74, 67–86 (2004)zbMATHMathSciNetGoogle Scholar
  50. 50.
    Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59, 1395–1412 (2011)zbMATHMathSciNetADSGoogle Scholar
  51. 51.
    Fabrini R., Bocedi A., Dawood K.F., Turella P., Stella L., Parker M.W., Pedersen J.Z., Federici G., Antonini G., Ricci G.: The extended catalysis of glutathione transferase. FEBS Lett. 585, 341–345 (2010)Google Scholar
  52. 52.
    Fenichel N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)zbMATHMathSciNetADSGoogle Scholar
  53. 53.
    Fersht A.R.: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis. Freeman, New York (1999)Google Scholar
  54. 54.
    Flach E.H., Schnell S.: Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol. 153, 187–191 (2006)Google Scholar
  55. 55.
    Gattulli V., Di Fabio F., Luongo A.: Nonlinear tuned mass damper for self-excited oscillations, wind and structures. Int. J. 7, 251–264 (2004)Google Scholar
  56. 56.
    Goldbeter A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  57. 57.
    Goldbeter A., Koshland D.E.: An amplified sensitivity arising from covalent modification in biological system. Proc. Natl. Acad. Sci. 78, 6840–6844 (1981)MathSciNetADSGoogle Scholar
  58. 58.
    Goldenfeld, N.D.: Lectures On Phase Transitions and the Renormalization Group, Frontiers in Physics. Perseus Books, New York (1992)Google Scholar
  59. 59.
    Goudar C.T., Harris S.K., McInerney M.J., Suflita J.M.: Progress curve analysis for enzyme anf microbial kinetic reactions using explicit solutions based on the Lambert W function. J. Microbiol. Methods 59, 317–326 (2004)Google Scholar
  60. 60.
    Gross T., Feudel U.: Generalized models as an universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 73, 016205–016214 (2006)ADSGoogle Scholar
  61. 61.
    Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematics Sciences, vol. 42. Springer, New York (1983)Google Scholar
  62. 62.
    Gunawardena J.: Some lessons about models from Michaelis and Menten. MBoC 23, 517–519 (2012)Google Scholar
  63. 63.
    Hadeler K.P., Jukić D., Sabo K.: Least-squares problems for Michaelis–Menten kinetics. Math. Methods Appl. Sci. 30, 1231–1241 (2007)zbMATHMathSciNetADSGoogle Scholar
  64. 64.
    Hammes G.G.: Thermodynamics and Kinetics for the Biological Sciences. Wiley-Interscience, New York (2000)Google Scholar
  65. 65.
    Hanson S.M., Schnell S.: Reactant stationary approximation in enzyme kinetics. J. Phys. Chem. 112, 8654–8658 (2008)Google Scholar
  66. 66.
    Hatakeyama M., Kimura S., Naka T., Kawasaki T., Yumoto N., Ichikawa M., Kim J.H., Saito K., Saeiki K.M., Shirouzu M., Yokoyama S., Konagaya A.: A computational model on the modulation of mitogen-activated protein kinae (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373, 451–463 (2003)Google Scholar
  67. 67.
    Heineken F.G., Tsushiya H.M., Aris R.: On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)Google Scholar
  68. 68.
    Hek G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)zbMATHMathSciNetGoogle Scholar
  69. 69.
    Henri V.: Recherches sur la loi de l’action de la sucrase. C. R. Hebd. Acad. Sci. 133, 891–899 (1901)Google Scholar
  70. 70.
    Henri V.: Über das Gesetz der Wirkung des Invertins. Z. Phys. Chem. 39, 194–216 (1901)Google Scholar
  71. 71.
    Henri V.: Théorie générale de l’action de quelques diastases. C. R. Hebd. Acad. Sci. 135, 916–919 (1902)Google Scholar
  72. 72.
    Huang C., Ferrell J.J.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 9, 10078–10083 (1996)Google Scholar
  73. 73.
    Johnson K.A., Goody R.S.: The original michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269 (2011)Google Scholar
  74. 74.
    Keener J., Sneyd J.: Mathematical Physiology. Springer, New York (1998)zbMATHGoogle Scholar
  75. 75.
    Kholodenko B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen–activated protein kinase cascade. Eur. J. Biochem. 267, 1583–1588 (2000)Google Scholar
  76. 76.
    Khoo C.F., Hegland M.: The total quasi-steady state assumption: its justification by singular perturbation and its application to the chemical master equation. ANZIAM J. 50, C429–C443 (2008)MathSciNetGoogle Scholar
  77. 77.
    Kirkinis E.: The renormalization group: a perturbation method for the graduate curriculum. SIAM Rev. 54, 374–388 (2011)MathSciNetGoogle Scholar
  78. 78.
    Kumar A., Josic̀ K.: Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol. 278, 87–106 (2011)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Laidler K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)Google Scholar
  80. 80.
    Legewie S., Schoeberl B., Bluthgen N., Herzel H.: Competing docking interactions can bring about bistability in the MAPK cascade. Biophys. J. 93, 2279–2288 (2007)ADSGoogle Scholar
  81. 81.
    Lehninger A.L.: Principles of Biochemistry. W.H. Freeman & Company, New York (2008)Google Scholar
  82. 82.
    Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 92, 426–444 (2012)zbMATHMathSciNetGoogle Scholar
  83. 83.
    Lin C.C., Segel L.A.: Mathematics Applied to Deterministic Problems in the Natural Sciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)zbMATHGoogle Scholar
  84. 84.
    Liu P., Kevrekidis I.G., Schvartsman S.Y.: Substrate-dependent control of ERK phosphorylation can lead to oscillations. Biophys. J. 101, 2572–2581 (2011)ADSGoogle Scholar
  85. 85.
    Luongo A.: Transfer matrix-perturbation approach to the buckling analysis of nonlinear periodic structures. Proc. Eng. Mech. 1, 505–508 (1995)Google Scholar
  86. 86.
    Luongo, A.: On the use of the multiple scale method in solving difficult bifurcation problems. In: The 4th Canadian Conference on Nonlinear Solid Mechanics (CanCNSM 2013) McGill University, July 23–26, 2013 Montreal, CanadaGoogle Scholar
  87. 87.
    Luongo A., D’Annibale F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Nonlinear Mech. 55, 128–139 (2013)ADSGoogle Scholar
  88. 88.
    Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41, 171–190 (2005)zbMATHMathSciNetGoogle Scholar
  89. 89.
    Luongo A., Di Egidio A., Paolone A.: Multiple time scale analysis for bifurcation from a multiple-zero eigenvalue. AIAA J. 41, 1143–1150 (2003)ADSGoogle Scholar
  90. 90.
    Luongo A., Di Egidio A., Paolone A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82, 2705–2722 (2004)MathSciNetGoogle Scholar
  91. 91.
    Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems I. An algebraic method. Acta Mech. 174, 91–107 (2005)zbMATHGoogle Scholar
  92. 92.
    Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems II. A geometrical method. Acta Mech. 174, 109–124 (2005)zbMATHGoogle Scholar
  93. 93.
    Luongo, A., Gattulli, V., Di Fabio, F.: 1:1 resonant Hopf bifurcations in slender space structures with tuned mass dampers. In: Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 2, pp. 939–945 (2001)Google Scholar
  94. 94.
    Luongo A., Paolone A.: Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218, 527–539 (1998)zbMATHADSGoogle Scholar
  95. 95.
    Luongo A., Paolone A., Di Egidio A.: Sensitivities and linear stability analysis around a double-zero eigenvalue. AIAA J. 38, 702–710 (2000)ADSGoogle Scholar
  96. 96.
    Luongo A., Paolone A., Di Egidio A.: Multiple time scales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)zbMATHMathSciNetGoogle Scholar
  97. 97.
    Luongo A., Pignataro M.: Multiple interaction and localization phenomena in the postbuckling of compressed thin-walled members. AIAA J. 26, 1395–1402 (1988)zbMATHADSGoogle Scholar
  98. 98.
    Luongo A., Vestroni F.: Bifurcations and stability of amplitude modulated planar oscillations of an orbiting string with internal resonances. Nonlinear Dyn. 9, 305–325 (1996)MathSciNetGoogle Scholar
  99. 99.
    Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2011)MathSciNetGoogle Scholar
  100. 100.
    Luongo A., Zulli D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70, 2049–2061 (2012)MathSciNetGoogle Scholar
  101. 101.
    Luongo A., Zulli D., Piccardo G.: Analytical and numerical approaches to nonlinear galloping of internally-resonant suspended cables. J. Sound Vib. 315, 375–393 (2008)ADSGoogle Scholar
  102. 102.
    MacNamara S., Bersani A.M., Burrage K., Sidje R.B.: Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129, 095105-1–095105-13 (2008)ADSGoogle Scholar
  103. 103.
    MacNamara S., Burrage K.: Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade. Numer. Algorithms 51, 281–307 (2009)zbMATHMathSciNetADSGoogle Scholar
  104. 104.
    Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61, 2196–2211 (2013)MathSciNetADSGoogle Scholar
  105. 105.
    Madeo A., George D., Lekszycki T., Nierenberger M., Remond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mec. 340, 575–589 (2012)ADSGoogle Scholar
  106. 106.
    Madeo A., George D., Remond Y.: Second-gradient models accounting for some effects of microstructure on remodelling of bones reconstructed with bioresorbable materials. Comput. Methods Biomech. Biomed. Eng. 16, 260–261 (2013)Google Scholar
  107. 107.
    Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mec. 339, 625–640 (2011)ADSGoogle Scholar
  108. 108.
    Markevich N.I., Hoek J.B., Kholodenko B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell. Biol. 164, 353–359 (2004)Google Scholar
  109. 109.
    Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung, Biochem. Z. 49, 333–369 English translation: R.S. Goody, K.A. Johnson, The Kinetics of Invertase Action, (1913)
  110. 110.
    Moles C.G., Mendes P., Banga J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)Google Scholar
  111. 111.
    Morales M.F., Goldman D.E.: A note on the differential equation of simple enzyme kinetics. J. Am. Chem. Soc. 77, 6069–6070 (1955)Google Scholar
  112. 112.
    Murray J.D.: Mathematical Biology: An Introduction. Springer, NewYork (2002)Google Scholar
  113. 113.
    Nayfeh A.H.: Perturbation Methods. Wiley, New York (2000)zbMATHGoogle Scholar
  114. 114.
    Nayfeh A.H.: Method of Normal Forms. Wiley, New York (2011)zbMATHGoogle Scholar
  115. 115.
    Nguyen A.H., Fraser S.J.: Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys. 91, 186–193 (1989)ADSGoogle Scholar
  116. 116.
    Nishiura, Y.: Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209, American Mathematical Society, Providence (1999)Google Scholar
  117. 117.
    Noethen L., Walcher S.: Quasi-steady state in Michaelis–Menten system. Nonlinear Anal. 8, 1512–1535 (2007)zbMATHMathSciNetGoogle Scholar
  118. 118.
    O’Malley R.E.: Introduction to Singular Perturbation. Academic Press, Amsterdam (1974)Google Scholar
  119. 119.
    Ortega F., Garces J.L., Mas F., Kholodenko B.N., Cascante M.: Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J. 273, 3915–3926 (2006)Google Scholar
  120. 120.
    Ouellet L., Laidler K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems: II. The case of two enzyme-substrate complexes. Can. J. Chem. 34, 146–150 (1956)Google Scholar
  121. 121.
    Palsson B.O.: On the dynamics of the irreversible Michaelis–Menten reaction mechanism. Chem. Eng. Sci. 42, 447–458 (1987)Google Scholar
  122. 122.
    Palsson B.O., Lightfoot E.N.: Mathematcal modelling of dynamics and control in metabolic networks. I. Michaelis–Menten kinetics. J. Theor. Biol. 111, 273–302 (1984)MathSciNetGoogle Scholar
  123. 123.
    Pasca M., Vestroni F., Luongo A.: Stability and bifurcations of transversal motions of an orbiting string with a longitudinal control force. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 76, 337–340 (1996)zbMATHGoogle Scholar
  124. 124.
    Pedersen M.G., Bersani A.M., Bersani E.: The total quasi steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol. 69, 433–457 (2005)MathSciNetGoogle Scholar
  125. 125.
    Pedersen M.G., Bersani A.M., Bersani E., Cortese G.: The total quasi-steady state approximation for complex enzyme reactions. Math. Comput. Simul. (MATCOM) 79, 1010–1019 (2008)zbMATHMathSciNetGoogle Scholar
  126. 126.
    Pedersen M.G., Bersani A.M., Bersani E.: Quasi steady-state approximations in intracellular signal transduction—a word of caution. J. Math. Chem. 43, 1318–1344 (2008)zbMATHMathSciNetGoogle Scholar
  127. 127.
    Pedersen M.G., Bersani A.M.: Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60, 267–283 (2010)zbMATHMathSciNetGoogle Scholar
  128. 128.
    Porfiri M., dell’Isola F., Frattale Mascioli F.N.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circuit Theory Appl. 32, 167–198 (2004)zbMATHGoogle Scholar
  129. 129.
    Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagn. Mech. 21, 69–87 (2005)Google Scholar
  130. 130.
    Price N.C., Stevens L.: Fundamentals of Enzymology. Oxford University Press, Oxford (1989)Google Scholar
  131. 131.
    Qiao L., Nachbar R.B., Kevrekidis I.G., Shvartsman S.Y.: Bistability and oscillations in the Huang–Ferrell model of MAPK signaling. PLoS Comput. Biol. 3, 1819–1826 (2007)MathSciNetGoogle Scholar
  132. 132.
    Quiligotti S., Maugin G., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160, 45–60 (2003)zbMATHGoogle Scholar
  133. 133.
    Raccah, E.: Applicazione delle tecniche del gruppo di rinormalizzazione alle cinetiche enzimatiche, Graduation Thesis in Physics, Sapienza Università di Roma (2012)Google Scholar
  134. 134.
    Rand R.H., Armbruster D.: Perturbation Methods, Bifurcation Theory and Computer Algebra, Applied Mathematics Sciences, vol. 65. Springer, New York (1987)Google Scholar
  135. 135.
    Rinaldi, A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 83, 046126-1–10 (2011)Google Scholar
  136. 136.
    Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)Google Scholar
  137. 137.
    Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices, ZAMM, doi: 10.1002/zamm.201300028 (2013)
  138. 138.
    Rodriguez-Fernandez M., Mendes P., Banga J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83, 248–265 (2006)Google Scholar
  139. 139.
    Rubinow S.I., Lebowitz J.L.: Time-dependent Michaelis–Menten kinetics for an enzyme-substrate-inhibitor system. J. Am. Chem. Soc. 92, 3888–3893 (1970)Google Scholar
  140. 140.
    Ruelle D.: Chaotic Evolution and Strange Attractors, Lezioni Lincee. Cambridge University Press, Cambridge (1989)Google Scholar
  141. 141.
    Sabouri-Ghomi M., Ciliberto A., Kar S., Novak B., Tyson J.J.: Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250, 209–218 (2008)MathSciNetGoogle Scholar
  142. 142.
    Salazar C., Höfer T.: Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein–protein interactions. BioSystems 83, 195–206 (2006)Google Scholar
  143. 143.
    Schauer M., Heinrich R.: Analysis of the quasi-steady-state approximation for one-substrate reaction. J. Theor. Biol. 79, 425–442 (1979)Google Scholar
  144. 144.
    Schnell S., Maini P.K.: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000)Google Scholar
  145. 145.
    Schnell S., Maini P.K.: Enzyme kinetics far from the standard quasi-steady state and equilibrium approximation. Math. Comput. Model. 35, 137–144 (2002)zbMATHMathSciNetGoogle Scholar
  146. 146.
    Schnell S., Maini P.K.: A century of enzyme kinetics. Reliability of the KM and vmax estimates. Comments Theor. Biol. 8, 169–187 (2003)Google Scholar
  147. 147.
    Schnell S., Mendoza C.: A closed-form solution for time-dependent enzyme kinetic. J. Theor. Biol. 187, 207–212 (1997)Google Scholar
  148. 148.
    Schnell S., Mendoza C.: Time-dependent closed form solutions for fully competitive enzyme reactions. Bull. Math. Biol. 62, 321–336 (2000)Google Scholar
  149. 149.
    Segel L.A.: Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  150. 150.
    Segel L.A.: On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988)zbMATHMathSciNetGoogle Scholar
  151. 151.
    Segel L.A., Slemrod M.: The quasi steady-state assumption: a case study in pertubation. SIAM Rev. 31, 446–477 (1989)zbMATHMathSciNetGoogle Scholar
  152. 152.
    Sols, A., Marco, R.: Concentrations of metabolites and binding sites, Implications in metabolic regulation, Curr. Top. Cell. Regul., 2 eds. B. Horecker and E. Stadtman, pp. 227–273 (1970)Google Scholar
  153. 153.
    Srere P.A.: Enzyme concentrations in tissues. Science 158, 936–937 (1967)ADSGoogle Scholar
  154. 154.
    Steuer R., Gross T., Selbig J., Blasius B.: Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. 103, 11868–11874 (2006)ADSGoogle Scholar
  155. 155.
    Straus O.H., Goldstein A.: Zone behavior of enzymes. J. Gen. Physiol. 26, 559–585 (1943)Google Scholar
  156. 156.
    Swoboda P.A.T.: The kinetics of enzyme action. Biochim. Biophys. Acta 23, 70–80 (1957)Google Scholar
  157. 157.
    Swoboda P.A.T.: The kinetics of enzyme action, II. The terminal phase of the reaction. Biochim. Biophys. Acta 25, 132–135 (1957)Google Scholar
  158. 158.
    Tikhonov, A.N.: Systems of differential equations with small parameters of the derivatives. Math. Sb. 31, 575–586 (in Russian) (1952)Google Scholar
  159. 159.
    Toti P., Petri A., Pelaia V., Osman A.M., Paoloni M., Bauer C.: A linearization method for low catalytic activity enzyme kinetic analysis. Biophys. Chem. 114, 245–251 (2005)Google Scholar
  160. 160.
    Tzafriri A.R.: Michaelis–Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)Google Scholar
  161. 161.
    Tzafriri A.R., Edelman E.R.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004)MathSciNetGoogle Scholar
  162. 162.
    Tzafriri A.R., Edelman E.R.: Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. J. Theor. Biol. 245, 737–748 (2007)MathSciNetGoogle Scholar
  163. 163.
    Van Slyke D.D., Cullen G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)Google Scholar
  164. 164.
    Varón R., Garcia-Moreno M., Masiá-Pérez J., García-Molina F., García-Cánovas F., Arias E., Arribas E., García-Sevilla F.: An alternative analysis of enzyme systems based on the whole reaction time: evaluation of the kinetic parameters and initial enzyme concentration. J. Math. Chem. 42, 789–813 (2007)zbMATHMathSciNetGoogle Scholar
  165. 165.
    Vidoli S., dell’Isola F.: Modal coupling in one-dimensional electromechanical structured continua. Acta Mech. 141, 37–50 (2000)zbMATHGoogle Scholar
  166. 166.
    Wang L., Sontag E.D.: On the number of steady states in a multiple futile cycle. J. Math. Biol. 57, 29–52 (2008)zbMATHMathSciNetGoogle Scholar
  167. 167.
    Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2. Springer, New York (1990)Google Scholar
  168. 168.
    Xing J., Chen J.: The Goldbeter–Koshland switch in the first-order region and its response to dynamic disorder. PLOS One 3, e2140 (2008)ADSGoogle Scholar
  169. 169.
    Yeremin E.N.: The Foundations of Chemical Kinetics. MIR Pub., Moscow (1979)Google Scholar
  170. 170.
    Zimmerle C.T., Frieden C.: Analysis of progress curves by simulations generated by numerical integration. Biochem. J. 258, 381–387 (1989)Google Scholar
  171. 171.
    Zumsande M., Gross T.: Bifurcations and Chaos in the MAPK signaling cascade. J. Theor. Biol. 265, 481–491 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto M. Bersani
    • 1
  • Enrico Bersani
    • 2
  • Guido Dell’Acqua
    • 3
  • Morten G. Pedersen
    • 4
  1. 1.Dipartimento SBAISapienza UniversityRomeItaly
  2. 2.Laboratorio di Strutture e Materiali IntelligentiSapienza UniversityCisterna di LatinaItaly
  3. 3.Ministero dell’Istruzione dell’Università e della RicercaRomeItaly
  4. 4.Department of Information EngineeringUniversity of PadovaPaduaItaly

Personalised recommendations