Continuum Mechanics and Thermodynamics

, Volume 26, Issue 3, pp 403–420 | Cite as

Thermodynamic approach to generalized continua

  • Peter VánEmail author
  • Arkadi Berezovski
  • Christina Papenfuss
Original Article


Governing equations of dissipative generalized solid mechanics are derived by thermodynamic methods in the Piola–Kirchhoff framework using the Liu procedure. The isotropic small-strain case is investigated in more detail. The connection to the Ginzburg–Landau type evolution, dual internal variables, and a thermodynamic generalization of the standard linear solid model of rheology is demonstrated. Specific examples are chosen to emphasize experimental confirmations and predictions beyond less general approaches.


Generalized solid mechanics Liu procedure Dual internal variables Thermodynamic rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids I. Int. J. Eng. Sci. 2, 189–203 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Germain P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Eringen A.C.: Balance laws of micromorphic continua revisited. Int. J. Eng. Sci. 30, 805–810 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Eringen C.: Microcontinuum field theories I. Foundations and solids. 3nd edn. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lee J.D., Wang X.: Generalized micromorphic solids and fluids. Int. J. Eng. Sci. 49, 1378–1387 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Forest S., Amestoy M.: Hypertemperature in thermoelastic solids. C. R. Mec. 336, 347–353 (2008)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Aslan, O., Forest S.: The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: de Borst, R., Ramm, E. (eds.) Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics, pp. 135–154. Springer, Berlin (2011)Google Scholar
  9. 9.
    Papenfuss C., Forest S.: Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. J. Non-Equilib. Thermodyn. 31(4), 319–353 (2006)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Haupt P.: Non-equilibrium thermodynamics with applications to solids, volume 336 of Courses and Lectures, Chapter Thermodynamics of Solids. CISM-Course, Udine 1993, pp. 65–138. Springer, Wien (1993)Google Scholar
  11. 11.
    Gyarmati I.: Non-Equilibrium Thermodynamics /Field Theory and Variational Principles. Springer, Berlin (1970)CrossRefGoogle Scholar
  12. 12.
    Ván, P., Muschik, W.: The structure of variational principles in nonequilibrium thermodynamics. In: Verhás, J. (ed.) Periodica Polytechnica, Physics and Nuclear Sciences, vol. 2/1–2, pp. 111–122 (1994)Google Scholar
  13. 13.
    Ván P., Nyíri B.: Hamilton formalism and variational principle construction. Ann. Phys. 8, 331–354 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Irwing J.H., Kirkwood J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Blenk S., Muschik W.: Orientational balances for nematic liquid crystals. J. Non-Equilib. Thermodyn. 16, 67–87 (1991)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Ehrentraut H., Muschik W., Papenfuss C.: Mesoscopically derived orientation dynamics of liquid crystals. J. Non-Equilib. Thermodyn. 22, 285–298 (1997)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Maugin G.A., Muschik W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)ADSzbMATHGoogle Scholar
  18. 18.
    Maugin G.A., Muschik W.: Thermodynamics with internal variables. Part II. Applications. J. Non-Equilib. Thermodyn. 19, 250–289 (1994)ADSGoogle Scholar
  19. 19.
    Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)ADSCrossRefGoogle Scholar
  20. 20.
    Müller I., Weiss W.: Thermodynamics of irreversible processes—past and present. Eur. Phys. J. H 37, 139–236 (2012)CrossRefGoogle Scholar
  21. 21.
    Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)Google Scholar
  22. 22.
    Ván, P.: Weakly nonlocal continuum theories of granular media: restrictions from the Second Law. Int. J. Solids Struct. 41(21), 5921–5927 (2004)Google Scholar
  23. 23.
    Ván, P., Fülöp, T.: Weakly nonlocal fluid mechanics—the Schrödinger equation. Proc. R. Soc. Lond. A, 462(2066), 541–557 (2006)Google Scholar
  24. 24.
    Cimmelli V.A.: An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48, 113510 (2007)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Matolcsi, T., Ván, P.: Can material time derivative be objective? Phys. Lett. A, 353, 109–112 (2006)Google Scholar
  27. 27.
    Ván, P.: Exploiting the Second Law in weakly nonlocal continuum physics. Period. Polytech. Ser. Mech. Eng. 49(1), 79–94 (2005)Google Scholar
  28. 28.
    Ván, P.: Weakly nonlocal non-equilibrium thermodynamics - variational principles and Second Law. In: Quak, E., Soomere T. (eds.) Applied Wave Mathematics (Selected Topics in Solids, Fluids, and Mathematical Methods), Chapter III, pp. 153–186. Springer, Berlin (2009)Google Scholar
  29. 29.
    Onsager L.: Reciprocal relations of irreversible processes I. Phys. Rev. 37, 405–426 (1931)ADSCrossRefGoogle Scholar
  30. 30.
    Onsager L.: Reciprocal relations of irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Casimir H.G.B.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945)ADSCrossRefGoogle Scholar
  32. 32.
    Cimmelli V.A., Ván P.: The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics. J. Math. Phys. 46(11), 112901–112915 (2005)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Ciancio V., Cimmelli V.A., Ván P.: On the evolution of higher order fluxes in non-equilibrium thermodynamics. Math. Comput. Model. 45, 126–136 (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ván P., Fülöp T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. 524(8), 470–478 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Landau, L.D., Ginzburg, V.L.: K teorii sverkhrovodimosti. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 20, 1064 (1950). English translation: On the theory of superconductivity, In: ter Haar, D. (ed.) Collected papers of L. D. Landau, pp. 546–568. Pergamon, Oxford (1965)Google Scholar
  36. 36.
    Landau, L.D., Khalatnikov, I.M.: Ob anomal’nom pogloshchenii zvuka vblizi tochek fazovogo perekhoda vtorogo roda, Dokladu Akademii Nauk SSSR. 96, 469–472 (1954). In: ter Haar, D. (ed.) Collected papers of L.D. Landau, pp. 626–633. Pergamon, Oxford (1965)Google Scholar
  37. 37.
    Grmela M.: Weakly nonlocal hydrodynamics. Phys. Rev. E 47(1), 351–602 (1993)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Grmela M., Öttinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    Fabrizio M.: An evolution model for the Ginzburg–Landau equations. Riv. Mat. Univ. Parma 2(6), 155–169 (1999)MathSciNetGoogle Scholar
  40. 40.
    Fabrizio M., Lazzari B., Morro A.: Thermodynamics of nonlocal electromagnetism and superconductivity. Math. Mod. Methods Appl. Sci. 13(7), 945–969 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    de Gennes P.G.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, New York (1993)Google Scholar
  42. 42.
    Fülöp T.: Thermodynamics of rheology: the standard model (under publication)Google Scholar
  43. 43.
    Verhás J.: Thermodynamics and Rheology. Akadémiai Kiadó and Kluwer Academic Publisher, Budapest (1997)zbMATHGoogle Scholar
  44. 44.
    Ferry J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)Google Scholar
  45. 45.
    Tschoegl N.W.: The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  46. 46.
    Klatt D., Hamhaber U., Asbach P., Braun J., Sackl I.: Noninvasive assessment of the rheological behavior of human organs using multifrequency mr elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52, 7281–7294 (2007)CrossRefGoogle Scholar
  47. 47.
    Haan Y.M., Sluimer G.M.: Standard linear solid model for dynamic and time dependent behaviour of building materials. Heron 46(1), 49–76 (2001)Google Scholar
  48. 48.
    Matsuki K., Takeuchi K.: Three-dimensional in situ stress determination by anelastic strain recovery of a rock core. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 1019–1022 (1993)CrossRefGoogle Scholar
  49. 49.
    Matsuki K.: Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. Int. J. Rock Mech. Min. Sci. 45, 952–965 (2008)CrossRefGoogle Scholar
  50. 50.
    Lin, W., et al.: A case study of 3d stress orientation determination in Shikoku island and Kii peninsula, Japan. In: Vrkljan, I. (ed.) Rock Engineering in Difficult Ground Conditions (Soft Rock and Karst), pp. 277–282, London (2010). Balkema. Proceedings of Eurock’09 Cavtat, Croatia, X. 28–29 (2009)Google Scholar
  51. 51.
    Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Fülöp T., Ván P.: Kinematic quantities of finite elastic and plastic deformations. Math. Methods Appl. Sci. 35, 1825–1841 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Noll W., Seguin B.: Basic concepts of thermomechanics. J. Elast. 101, 121–151 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Ván P., Papenfuss C.: Thermodynamic consistency of third grade finite strain elasticity. Proc. Estonian Acad. Sci. 59(2), 126–132 (2010)CrossRefzbMATHGoogle Scholar
  56. 56.
    Fabrizio M., Morro A.: Thermodynamics and second sound in a two-fluid model of helium II; Revisited. J. Non-Equilib. Thermody. 28, 69–84 (2003)ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    McFadden G.B., Anderson D.M., Wheeler A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    Goddard J.D.: A note on Eringen’s moment balances. Int. J. Eng. Sci. 49, 1486–1493 (2011)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Gurtin M.E., Fried E., Anand L.: The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Ván
    • 1
    • 2
    • 3
    Email author
  • Arkadi Berezovski
    • 4
  • Christina Papenfuss
    • 5
  1. 1.Department of Theoretical PhysicsWigner RCP, HASBudapestHungary
  2. 2.Department of Energy EngineeringBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Montavid Thermodynamic Research GroupBudapestHungary
  4. 4.Centre for Nonlinear Studies, Institute of CyberneticsTallinn University of TechnologyTallinnEstonia
  5. 5.Technical University of BerlinBerlinGermany

Personalised recommendations