Continuum Mechanics and Thermodynamics

, Volume 17, Issue 8, pp 545–576 | Cite as

A thermo-mechanical continuum theory with internal length for cohesionless granular materials

Part I. A class of constitutive models
  • Chung FangEmail author
  • Yongqi Wang
  • Kolumban Hutter
Original Article


A thermodynamically consistent continuum theory for single-phase, single-constituent cohesionless granular materials is presented. The theory is motivated by dimensional inconsistencies of the original Goodman-Cowin theory [1–3]; it is constructed by removing these inconsistencies through the introduction of an internal length ℓ. Four constitutive models are proposed and discussed in which ℓ is (i) a material constant (Model I), (ii) an independent constitutive variable (Model II), (iii) an independent dynamic field quantity (Model III) and (iv) an independent kinematic field quantity (Model IV). Expressions of the constitutive variables emerging in the systems of the balance equations in these four models in thermodynamic equilibrium are deduced by use of a thermodynamic analysis based on the Müller-Liu entropy principle. Comments on the validity of these four models are given and discussed; the results presented in the current study show a more general formulation for the constitutive quantities and can be used as a basis for further continuum-based theoretical investigations on the behaviour of flowing granular materials. Numerical results regarding simple plane shear flows will be discussed and compared in Part II of this work.


Goodman-Cowin theory Müller-Liu entropy principle Internal length Granular materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodman, M.A.: A continuum theory for the dynamical behavior of granular materials. Ph.D. Thesis, Tulane University, USA (1970)Google Scholar
  2. 2.
    Goodman, M.A., Cowin, S.C.: Two problems in the gravity flow of granular materials. J. Fluid Mech. 45, 321–339 (1971zbMATHCrossRefGoogle Scholar
  3. 3.
    Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Rational Mech. Anal. 44, 249–266 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Duran, J.: Sands, Powders and Grains. Springer, Berlin Heidelberg New York (2000)zbMATHGoogle Scholar
  5. 5.
    Hutter, K.: Order and disorder in granular materials: experiment and theory. In: Hutter, K., Wilmański, K. (eds.), Kinetic and Continuum Theories of Granular and Porous Media, pp. 1–65.Springer, Berlin, Heidelberg, New York(2000)Google Scholar
  6. 6.
    Hutter, K., Rajagopal, K.R.: On flows of granular materials. Continuum. Mech. Thermodyn. 6, 81–139 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Savage, S.B.: Mechanics of granular flows. In: Hutter, K. (ed.), Continuum Mechanics in Environmental Sciences and Geophysics.Springer, Berlin Heidelberg New York, pp. 467–522 (1993)Google Scholar
  8. 8.
    Wang, Y., Hutter, K.: Granular material theories revisited. In: Balmforth, N.J., Provenzale, A. (eds.), Geomorphological Fluid Mechanics, pp. 79–107.Springer, Berlin Heidelberg New York (2001)CrossRefGoogle Scholar
  9. 9.
    Fang, C.: A thermo-mechanical continuum theory with internal length of cohesionless granular materials. Ph.D. thesis, Darmstadt University of Technology, Germany (2005)Google Scholar
  10. 10.
    Chen, C.L., Ling, C.H.: Granular-flows rheology: role of shear-rate number in transition regime. J. Eng. Mech. 122, 469–480 (1996)CrossRefGoogle Scholar
  11. 11.
    Coussot, P.: Steady, laminar flow of concentrated mud suspensions in open channels. J. Hydr. Res. 32(4), 535–550 (1994)Google Scholar
  12. 12.
    Massoudi, M., Boyle, E.J.: A review of theories for flowing granular materials with applications to fluidized beds and solids transport. U.S. Department of Energy Report, DOE/PETC/TR-91/8 (1991)Google Scholar
  13. 1.
    McTigue, D.F.: A non-linear constitutive model for granular materials: applications to gravity flows. J. Appl. Mech. 49, 291–296 (1982)zbMATHCrossRefGoogle Scholar
  14. 14.
    Rajagopal, K.R., Troy, W.C.: Massoudi, M.: Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech., B/Fluids 11, 265–276 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Savage, S.B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96 (1979)zbMATHCrossRefGoogle Scholar
  16. 16.
    Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18, 1129–1148 (1980)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sampaio, R.S., Williams, W.O.: J. de Mechanique 18, 19–45 (1979)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Bluhm, J., De Boer, R., Wilmański, K.: The thermodynamic structure of the two-component model of porous incompressible materials with true mass densities. Mech. Res. Reviews 22, 171–180 (1995)zbMATHGoogle Scholar
  19. 19.
    Hutter, K., Laloui, L., Vulliet, L.: Thermodynamically based mixture models of saturated and unsaturated soils. Mech Cohesive-Frictional Mat. 4(4), 295–338 (1999)CrossRefGoogle Scholar
  20. 20.
    Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng. Sci. 33, 2021–2054 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng. Sci. 33, 2021–2054 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Cowin, S.C.: A theory for the flow of granular materials. Powder Technol. 9, 61–69 (1974)CrossRefGoogle Scholar
  23. 23.
    Cowin, S.C.: Constitutive relations that imply a generalized Mohr-Coulomb criterion. Acta Mechanica. 20, 41–46 (1974)CrossRefzbMATHGoogle Scholar
  24. 24.
    Cowin, S.C.: Polar fluids. Phys. Fluids 11(9), 1919–1927 (1968)zbMATHCrossRefGoogle Scholar
  25. 25.
    Nunziato, J.W., Passman, S.L.: Gravitational flows of granular materials with incompressible grains. J. Rheology 24, 395–420 (1980)zbMATHCrossRefGoogle Scholar
  26. 26.
    Nunziato, J.W., Walsh, E.K.: On ideal multiphase mixtures with chemical reactions and diffusions. Arch. Rational Mech. Anal. 73, 285–311 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Passman, S.L., Nunziato, J.W., Bailey, P.B., Thomas, J.P.: Shearing flow of granular materials. J. Eng. Mech. Division, ASCE 106, 773–783 (1980)Google Scholar
  28. 28.
    Passman, S.L., Nunziato, J.W., Walsh, E.K.: A theory of multiphase mixtures. In: Truesdell, C. (ed.), Rational Thermodynamics, pp. 287–325. Springer, Berlin Heidelberg New York(1984)Google Scholar
  29. 29.
    Wang, Y., Hutter, K.: A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granular Matter 1, 163–181 (1999)CrossRefGoogle Scholar
  30. 30.
    Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38, 214–223 (1999)CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Part Sci. Technol. 17, 97–124 (1999)CrossRefGoogle Scholar
  32. 32.
    Hutter, K.: The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta. Mechanica. 27, 1–54 (1977)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Wang, Y., Hutter, K.: Comparison of two entropy principles and their applications in granular flows with/without fluid. Arch. Mech. 51(5), 605–632 (1999)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Kirchner, N.: Thermodynamics of structured granular materials. Ph.D. Thesis, Darmstadt University of Technology, Germany (2001)Google Scholar
  35. 35.
    Kirchner, N.: Thermodynamically consistent modelling of abrasive granular materials. I: Non-equilibrium theory. Proc. R. Soc. Lond. A 458, 2153–2176 (2002)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Kirchner, N., Teufel, A.: Thermodynamically consistent modelling of abrasive granular materials. II: Thermodynamic equilibrium and applications to steady shear flows. Proc. R. Soc. Lond. A 458, 3053–3077 (2002)zbMATHCrossRefGoogle Scholar
  37. 37.
    Cowin, S.C., Goodman, M.A.: A variational principle for granular materials. ZAMM 56, 281–286 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Liu, I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46, 131–148 (1972)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Liu, I.-S.: On the entropy supply in a classical and a relativistic fluid. Arch. Rational Mech. Anal. 50, 111–117 (1973)MathSciNetGoogle Scholar
  40. 40.
    Liu, I.-S.: Continuum Mechanics. Springer, Berlin Heidelberg New York (2002)zbMATHGoogle Scholar
  41. 41.
    Liu, I.-S., Muller, I.: Thermodynamics of mixtures of fluids. In: Truesdell, C. (ed.), Rational Thermodynamics, Springer, Berlin Heidelberg New York (1984)Google Scholar
  42. 42.
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.), Handbuch der Physik, III/3, Springer, Berlin Heidelberg New York (1965)Google Scholar
  43. 43.
    Wang, C.-C.: A new representation theorem for isotropic functions, Part I and Part II. Arc. Rational Mech. Anal. 36, 166–197, 198–223; Corrigendum, ibid. 43, 392–395 (1971)Google Scholar
  44. 44.
    Wang. C.-C., Liu, I.-S.: A note on material symmetry. Arch. Rational Mech. Anal. 74, 277–296 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Wilmański, K.: Thermo-Mechanics of Continua. Springer, Berlin Heidelberg New York (1998)Google Scholar
  46. 46.
    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72, 175–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Cowin, S.C., Leslie, L.M.: On Kinetic Energy and Moment in Cosserat Continua. ZAMP 31, 247–260 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Vardoulakis, I., Aifantis, E.C.: A gradient flow theory of plasticity for granular materials. Acta Mechanica. 87, 197–217 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Terzaghi, K.: Theoretical Soil Mechanics. Wiley (1963)Google Scholar
  50. 50.
    Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press (1959)Google Scholar
  51. 51.
    Bradshaw, P.: An Introduction to Turbulence and Its Measurement. Pergamon Press, New York (1971)zbMATHGoogle Scholar
  52. 52.
    Lesieur, M.: Turbulence in Fluids. Martinus Nijhoff Publishers, Dordrecht (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für MechanikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations