Advertisement

Continuum Mechanics and Thermodynamics

, Volume 16, Issue 1–2, pp 199–219 | Cite as

A void-based description of compaction and segregation in flowing granular materials

  • E. FriedEmail author
  • M. E. Gurtin
  • K. Hutter
Original article

Abstract.

Guided by the kinematical treatment of vacancies in theories for solid-state diffusion, we develop a theory for compaction and segregation in flowing granular materials. This theory leads to a partial differential equation for the macroscopic motion of the material coupled to a system of partial differential equations for the volume fractions of the individual particle types. When segregation is ignored, so that the focus is compaction, the latter system is replaced by a scalar partial differential equation that closely resembles equations arising in theories of traffic flow. To illustrate the manner in which the theory describes compaction and segregation, we present three explicit solutions. In particular, for an arbitrary loosely packed mixture of small and large particles in a fixed container under the influence of gravity, we show that a layer of large particles forms at the free surface and grows with time, while a closely packed mixture of large and small particles forms and grows from the base of the container; the final solution, attained in a finite time, consists of a layer of closely packed large particles above a closely packed mixed state. At the level of everyday experience, this solution at least qualitatively explains why in a container of mixed nuts, Brazil nuts are generally found at the top.

Keywords:

Granular flow segregation compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donald, M.B., Roseman, B.: Mechanisms in a horizontal drum mixer. Br. Chem. Eng. 7, 749-753 (1962)Google Scholar
  2. 2.
    Campbell, H., Bauer, W.C.: Cause and cure of demixing in solid-solid mixers. Chem. Eng. 73, 179-184 (1966)Google Scholar
  3. 3.
    Hill, K.M., Kakalios, J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610-R3613 (1994)Google Scholar
  4. 4.
    Brown, R.L.: The fundamental principles of segregation. J. Inst. Fuel 13, 15-19 (1939)zbMATHGoogle Scholar
  5. 5.
    Williams, J.C.: Segregation of powders and granular materials. Fuel Soc. J. 14, 29-34 (1963)zbMATHGoogle Scholar
  6. 6.
    Williams, J.C.: The segregation of particulate materials. A review. Powder Technol. 15, 245-251 (1976)CrossRefGoogle Scholar
  7. 7.
    Bridgewater, J.: Fundamental powder mixing mechanisms. Powder Technol. 15, 215-236 (1976)CrossRefGoogle Scholar
  8. 8.
    Harwood, C.F.: Powder segregation due to vibration. Powder Technol. 16, 51-57 (1977)CrossRefGoogle Scholar
  9. 9.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55-91 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Haff, P.K., Werner, B.T.: Computer simulation of the mechanical sorting of grains. Powder Technol. 48, 239-245 (1986)CrossRefGoogle Scholar
  11. 11.
    Ohtsuki, T., Takemoto, Y., Hata, T., Kawai, S., Hayashi, A.: Molecular dynamics study of cohesionless granular materials: Size segregation by shaking. Int. J. Mod. Phys. B 7, 1865-1872 (1993)Google Scholar
  12. 12.
    Baumann, G., Jánosi, I.M., Wolf, D.E.: Particle trajectories and segregation in a two-dimensional rotating drum. Europhys. Lett. 27, 203-208 (1994)Google Scholar
  13. 13.
    Ristow, G.H.: Particle mass segregation in a two-dimensional rotating drum. Europhys. Lett. 28, 97-101 (1994)Google Scholar
  14. 14.
    Dury, C.M., Ristow, G.H.: Radial segregation in a two-dimensional rotating drum. J. Phys. I 7, 737-745 (1997)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hong, Paul V. Quinn, P.V., Luding, S.: Reverse Brazil nut problem: Competition between percolation and condensation. Phys. Rev. Lett. 86, 3423-3426 (2001)CrossRefGoogle Scholar
  16. 16.
    Savage, S.B.: Mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289-366 (1984)zbMATHGoogle Scholar
  17. 17.
    Hutter, K., Rajagopal, K.R.: On flows of granular materials. Continuum Mech. Thermodyn. 6, 81-139 (1994)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, Y., Hutter, K.: Granular material theories revisited. In: Balmforth, N.J., Provenzale, A. (eds) Hot, Cold and Dirty Fluids: Selected Topics in Geological and Geomorphological Fluid Mechanics, Springer, Berlin Heidelberg New York (2001)Google Scholar
  19. 19.
    Jenkins, J.T., Mancini, F.: Kinetic theory for mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050-2057 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Arnarson, B.Ö., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324-1328 (1998)CrossRefGoogle Scholar
  21. 21.
    Jenkins, J.T.: Particle segregation in collisional flows of inelastic spheres. In: Hermann, H.J., Hovig, J.-P., Ludig, S. (eds) Physics of Dry Granular Media, Kluwer, Dordrecht, Boston, London (1998) pp. 645-658Google Scholar
  22. 22.
    Arnarson, B.Ö., Jenkins, J.T.: Particle segregation in the context of species momentum balances. In: Helbing, D., Hermann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ‘99, Springer, Berlin Heidelberg New York (2000) pp. 481-487Google Scholar
  23. 23.
    Aranson, I.S., Tsimring, L.S., Vinokur, V.M.: Continuum theory of axial segregation in a long rotating drum. Phys. Rev. E 60, 1975-1987 (1999)CrossRefGoogle Scholar
  24. 24.
    Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Mixing and segregation of granular materials in chute flows. Chaos 9, 594-610 (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rosato, A., Prinz, F., Standburg, K.J., Svendsen, A.: Monte-Carlo simulation of particulate matter segregation. Powder Technol. 49, 59-69 (1986)CrossRefGoogle Scholar
  26. 26.
    Rosato, A., Prinz, F., Standburg, K.J., Svendsen, A.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038-1040 (1987)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of cohesionless granular solids. J. Fluid Mech. 189, 311-335 (1988)Google Scholar
  28. 28.
    Fitt, A.D., Wilmott, P.: Cellular-automaton model for segregation of a two-species granular flow. Phys. Rev. A 45, 2383-2388 (1992)CrossRefGoogle Scholar
  29. 29.
    Ågren, J.: Diffusion in phases with several components and sublattices. J. Phys. Chem. Solids 43, 421-430 (1982)CrossRefGoogle Scholar
  30. 30.
    Cahn, J.W., Larché, F.C.: An invariant formulation of multicomponent diffusion in crystals. Scripta Metall. 17, 927-932 (1983)CrossRefGoogle Scholar
  31. 31.
    Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331-357 (1983)CrossRefGoogle Scholar
  32. 32.
    Mullins, W.W., Sekerka, R.F.: On the thermodynamics of crystalline solids. J. Chem. Phys. 82, 5192-5202 (1985)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Fried, E., Gurtin, M.E.: Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Stat. Phys. 95, 1361-1427 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Litwiniszyn, J.: A model of a random walk of particles adapted to researches on problems of mechanics of loose media. Bull. Acad. Pol. Sci. (Ser. Sci. Tech.) 11, 61-70 (1963)Google Scholar
  35. 35.
    Mullins, W.W.: Stochastic theory of particle flow under gravity. J. Appl. Phys. 43, 665-678 (1972)Google Scholar
  36. 36.
    Caram, H.S., Hong, D.C.: Diffusing void model for granular flow. Mod. Phys. Lett. B 6, 761-771 (1992)Google Scholar
  37. 37.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, Oxford University Press Oxford (1993)Google Scholar
  38. 38.
    Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal. 113, 97-120 (1991)zbMATHGoogle Scholar
  39. 39.
    Kirchner, N.P.: Thermodynamically consistent modelling of absrasive granular materials. Part I: Non-equilibrium theory, Proc. R. Soc. London, Ser. A (2002) (to appear)Google Scholar
  40. 40.
    Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, Ser. A 225, 49-63 (1954)Google Scholar
  41. 41.
    Shahinpoor, M., Lin, S.P.: Rapid Couette flow of cohesionless granular materials. Acta Mech. 42, 183-196 (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA
  3. 3.Institute of MechanicsDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations