Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The distribution of dark matter in galaxies

Abstract

The distribution of the non-luminous matter in galaxies of different luminosity and Hubble type is much more than a proof of the existence of dark particles governing the structures of the Universe. Here, we will review the complex but well-ordered scenario of the properties of the dark halos also in relation with those of the baryonic components they host. Moreover, we will present a number of tight and unexpected correlations between selected properties of the dark and the luminous matter. Such entanglement evolves across the varying properties of the luminous component and it seems to unequivocally lead to a dark particle able to interact with the Standard Model particles over cosmological times. This review will also focus on whether we need a paradigm shift, from pure collisionless dark particles emerging from “first principles”, to particles that we can discover only by looking to how they have designed the structure of the galaxies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Notes

  1. 1.

    Only much later the universality of the DM phenomenon in spirals did emerge (Persic et al. 1996).

  2. 2.

    We take \(R_{\mathrm{opt}}\equiv 3.2 \, R_D\) as the reference stellar disk edge.

  3. 3.

    The HI component is obtained directly from observations; however, it is always negligible because \(\mathrm{d}V^2_{\mathrm{HI}}/\mathrm{d}r\simeq 0\).

  4. 4.

    \(R_3\simeq 1.1 \ R_{1/2}\).

  5. 5.

    Notice that maximal disks are incompatible with cuspy DM halos (van Albada et al. 1985).

  6. 6.

    See also Lapi et al. (2018) for the analysis of 24 coadded RCs obtained from 3500 individual RCs.

  7. 7.

    We stress that only the RCs with \(190~\mathrm{km}/\mathrm{s}< V_{\mathrm{opt}} < 230~\mathrm{km}/\mathrm{s}\) and in the radial range \(1 \, R_D<R<4 \, R_D\) can be considered flattish.

  8. 8.

    In short: the variance of V(xL) is negligible, i.e., the r.m.s. of the values of the RCs in galaxies of same luminosity L and at the same radius x is negligible.

  9. 9.

    Let us stress that, in this issue, non circular motions in the RCs play a minor role (Oh 2008; Gentile et al. 2005).

  10. 10.

    The raw kinematical data needed to build the Galaxy RC can be found Pato and Iocco (2017), see Fig. 14.

  11. 11.

    SKA will exponentially increase the amount of available kinematics.

  12. 12.

    \(V(r)= (r ~\mathrm{d}\varPhi /\mathrm{d}r)^{1/2}\) with \(\varPhi \) the total gravitational potential.

References

  1. Adams JJ, Simon JD, Fabricius MH et al (2014) Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics. ApJ 789:63

  2. Adhikari R, Agostini M, Ky NA et al (2017) A white paper on keV sterile neutrino dark matter. JCAP 1:025

  3. Alabi AB, Forbes DA, Romanowsky AJ et al (2016) The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond. MNRAS 460:3838

  4. Alabi A, Ferré-Mateu A, Romanowsky AJ, Brodie J, Forbes DA, Wasserman A, Bellstedt S, Martín-Navarro I, Pandya V, Stone M, Okabe N (2018) Origins of ultradiffuse galaxies in the Coma cluster—I. Constraints from velocity phase space. Mon Not R Astron Soc 479(3):3308–3318. https://doi.org/10.1093/mnras/sty1616

  5. An JH, Evans NW (2011) Modified virial formulae and the theory of mass estimators. MNRAS 413:1744

  6. Aprile E, Aalbers J, Agostini F (2018) Dark matter search results from a one ton-year exposure of XENON1T (XENON Collaboration). PRL 121:111302

  7. Arcadi G, Dutra M, Ghosh P (2018) The waning of the WIMP? A review of models, searches, and constraints. EPJC 78:203

  8. Auger MW et al (2010) The Sloan Lens ACS Survey. X. Stellar, dynamical, and total mass correlations of massive early-type galaxies. ApJ 724:511

  9. Bacon R, Copin Y, Monnet G (2001) The SAURON project—I. The panoramic integral-field spectrograph. MNRAS 326:23

  10. Bahcall JN (1984) K giants and the total amount of matter near the sun. ApJ 276:169

  11. Bartelmann M, Maturi M (2016) Weak gravitational lensing. ArXiv e-print. arXiv:1612.06535

  12. Battaglia G, Helmi A, Breddels M (2013) Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron Rev 57:52

  13. Beasley MA, Romanowsky AJ, Pota V et al (2016) An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster. ApJL 819:L20

  14. Bell E, de Jong RS (2001) Stellar mass-to-light ratios and the Tully–Fisher relation. ApJ 550:212

  15. Bell EF, McIntosh DH, Katz N, Weinberg MD (2003) The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. ApJS 149:289

  16. Bellazzini B, Cliche M, Tanedo P (2013) Effective theory of self-interacting dark matter. PRD 88:083506

  17. Bernal N, Heikinheimo Tenkanen NT (2017) The dawn of FIMP dark matter: a review of models and constraints. IJMPA 32:27

  18. Bernardi M, Sheth RK, Annis J (2003) Early-type galaxies in the Sloan Digital Sky Survey. II. Correlations between observables. AJ 125:1866

  19. Bershady MA, Verheijen MAW, Westfall KB (2010a) The DiskMass Survey. I. Overview. ApJ 716:234

  20. Bershady MA, Verheijen MAW, Swaters RA (2010b) The DiskMass Survey. II. Error budget. ApJ 716:198

  21. Bertone G (ed) (2010) Particle dark matter: observations, models and searches. Cambridge University Press, Cambridge

  22. Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90(4):045002. https://doi.org/10.1103/RevModPhys.90.045002

  23. Binney J, Tremaine S (2008) Galactic dynamics. Princeton University Press, Princeton

  24. Bloom JV (2017) The SAMI Galaxy Survey: the low-redshift stellar mass Tully–Fisher relation. MNRAS 472:1809

  25. Boddy KK, Feng JL, Manoj Kaplinghat M et al (2014) Strongly interacting dark matter: self-interactions and keV lines. PRD 89:115017

  26. Bode P, Ostriker JP, Turok N (2001) Halo formation in warm dark matter models. ApJ 556:93

  27. Bolton AS, Burles S, Koopmans LVE et al (2006) The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies. ApJ 638:703

  28. Bolton AS, Burles S, Treu T (2007) A more fundamental plane. ApJ 665:105

  29. Bolton AS et al (2008) The Sloan Lens ACS Survey. VII. Elliptical galaxy scaling laws from direct observational mass measurements. ApJ 684:248

  30. Bonnivard V et al (2015) Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs. MNRAS 453:849

  31. Bosma A (1981a) 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. AJ 86:1791

  32. Bosma A (1981b) 21-cm line studies of spiral galaxies. I—observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. AJ 86:1825

  33. Bothun GD, Impey CD, Malin DF (1991) Extremely low surface brightness galaxies in the Fornax Cluster—properties, stability, and luminosity fluctuations. ApJ 376:404

  34. Bottema R, Pestaña JLG (2015) The distribution of dark and luminous matter inferred from extended rotation curves. MNRAS 448:2566

  35. Boyarsky A, Nevalainen J, Ruchayskiy O (2007) Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor. A&A 471:51

  36. Breddels MA, Helmi A, van den Bosch RCE et al (2013) Orbit-based dynamical models of the Sculptor dSph galaxy. MNRAS 433:3173

  37. Bringmann T et al (2016) Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter. PRD 94:103529

  38. Brook CB, Santos-Santos I, Stinson G (2016) The different baryonic Tully–Fisher relations at low masses. MNRAS 459:638

  39. Brown WR, Geller MJ, Kenyon SJ, Diaferio A (2009) The anisotropic spatial distribution of hypervelocity stars. ApJ 690:1639

  40. Bruzual G, Charlot S (2003) Stellar population synthesis at the resolution of 2003. MNRAS 344:1000

  41. Bullock JS, Boylan-Kolchin M (2017) Small-scale challenges to the \(\varLambda \)CDM paradigm. ARAA 55:343

  42. Burkert A (1995) The structure of dark matter halos in dwarf galaxies. ApJL 447:L25

  43. Burkert A (2015) The structure and dark halo core properties of dwarf spheroidal galaxies. ApJ 808:158

  44. Butler J (2018) Dark matter searches at the LHC. PoS(ALPS2018), 030

  45. Caldwell JAR, Ostriker JP (1981) The mass distribution within our Galaxy—a three component model. ApJ 251:61

  46. Campbell DJR et al (2017) Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses. MNRAS 469:2335

  47. Cappellari M (2016) Structure and kinematics of early-type galaxies from integral field spectroscopy. ARAA 54:597

  48. Cappellari M, Emsellem E, Krajnović D et al (2011) The ATLAS\(^{3D}\) project—VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation. MNRAS 413:813

  49. Cappellari M et al (2012) Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484:485

  50. Cappellari M et al (2013) The ATLAS\(^{3D}\) project—XX. Mass-size and mass-\(\sigma \) distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. MNRAS 432:1709

  51. Cappellari M, Romanowsky AJ, Brodie JP et al (2015) Small scatter and nearly isothermal mass profiles to four half-light radii from two-dimensional stellar dynamics of early-type galaxies. ApJL 804:L21

  52. Cappellari M et al (2006) The SAURON project—IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies. MNRAS 366:1126

  53. Carignan C, Freeman KC (1985) Basic parameters of dark halos in late-type spirals. ApJ 294:494

  54. Catena R, Ullio P (2010) A novel determination of the local dark matter density. JCAP 08(2010):004

  55. Catena R, Ullio P (2012) The local dark matter phase-space density and impact on WIMP direct detection. JCAP 05(2012):005

  56. Catinella B, Giovanelli R, Haynes MP (2006) Template rotation curves for disk galaxies. ApJ 640:751

  57. Chae K-H (2014) A universal power-law profile of pseudo-phase-space density-like quantities in elliptical galaxies. ApJL 788:L15

  58. Coccato L, Gerhard O, Arnaboldi M et al (2009) Kinematic properties of early-type galaxy haloes using planetary nebulae. MNRAS 394:1249

  59. Corbelli E, Salucci P (2000) The extended rotation curve and the dark matter halo of M33. MNRAS 311:441

  60. Corsini EM, Wegner GA, Thomas J et al (2017) The density of dark matter haloes of early-type galaxies in low-density environments. MNRAS 466:974

  61. Courteau S (1997) Optical rotation curves and linewidths for Tully–Fisher applications. AJ 114:2402

  62. Cretton N, de Zeeuw PT, van der Marel RP, Rix H-W (1999) Axisymmetric three-integral models for galaxies. ApJS 124:383

  63. Deason AJ, Belokurov V, Evans NW, An J (2012) Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo. MNRAS 424:L44

  64. de Blok WJG (2010) The core–cusp problem. Adv Astron 2010:789293

  65. de Blok WJG, McGaugh SS, Rubin VC (2001) High-resolution rotation curves of low surface brightness galaxies. II. Mass models. AJ 122:2396

  66. de Blok WJG, Walter F, Brinks E (2008) High-resolution rotation curves and galaxy mass models from THINGS. AJ 136:2648

  67. De Masi C, Matteucci F, Vincenzo F (2018) The effects of the initial mass function on the chemical evolution of elliptical galaxies. MNRAS 474:5259

  68. Destri C, de Vega P, Sanchez NG (2013) Warm dark matter primordial spectra and the onset of structure formation at redshift z. PRD 88:3512

  69. de Swart J, Bertone G, van Dongen J (2017) How dark matter came to matter. Nat Astron 1:005

  70. de Vega HJ, Sanchez NG (2017) Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies. EPJC 77:1

  71. de Zeeuw PT, Bureau M, Emsellem E (2002) The SAURON project—II. Sample and early results. MNRAS 329:513

  72. Di Cintio A, Brook CB, Dutton AA et al (2014) A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. MNRAS 441:2986

  73. Di Paolo C, Salucci P (2018) The universal rotation curve of low surface brightness galaxies IV: the interrelation between dark and luminous matter. ArXiv e-print. arXiv:1805.07165

  74. Di Paolo C, Nesti F, Villante FL (2018) Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. MNRAS 475:5385

  75. Djorgovski S, Davis M (1987) Fundamental properties of elliptical galaxies. ApJ 313:59

  76. Dodelson S, Widrow LM (1994) Sterile neutrinos as dark matter. PRL 72:17

  77. Donato F, Gentile G, Salucci P (2004) Cores of dark matter haloes correlate with stellar scalelengths. MNRAS 353:17

  78. Donato F, Gentile G, Salucci P et al (2009) A constant dark matter halo surface density in galaxies. MNRAS 397:1169

  79. Dressler A, Lynden-Bell D, Burstein D et al (1987) Spectroscopy and photometry of elliptical galaxies. I—a new distance estimator. ApJ 313:42

  80. Ellis G et al (2018) The standard cosmological model: achievements and issues. Found Phys 48:1226

  81. Ettori S, Fabian AC (2006) Effects of sedimented helium on the X-ray properties of galaxy clusters. MNRAS 369:L42

  82. Evoli C, Salucci P, Lapi A, Danese L (2011) The HI content of local late-type galaxies. ApJ 743:45

  83. Faber SM, Gallagher JS (1979) Masses and mass-to-light ratios of galaxies. ARAA 17:135

  84. Fabricant D, Rybicki G, Gorenstein P (1984) Further evidence for M87’s massive, dark halo. ApJ 286:186

  85. Freeman KC (1970) On the disks of spiral and so galaxies. ApJ 160:811

  86. Freese K (2017) Status of dark matter in the universe. IJMPD 26:1730012

  87. Gammaldi V (2015) Indirect searchers of TeV dark matter. PhD thesis, UCM Madrid

  88. Gammaldi V (2016) Highlights on gamma rays, neutrinos and antiprotons from TeV dark matter. EPJ Web Conf 121:06003

  89. García-Bellido J (2017) Massive primordial black holes as dark matter and their detection with gravitational waves. J Phys Conf Ser 840:012032

  90. Gentile G, Salucci P, Klein U, Vergani D, Kalberla P (2004) The cored distribution of dark matter in spiral galaxies. MNRAS 351:903

  91. Gentile G, Burkert A, Salucci P et al (2005) The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. ApJ 634:145

  92. Genzel R, Schreiber NMF, Übler H et al (2017) Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543:397

  93. Gondolo P (2002) Recoil momentum spectrum in directional dark matter detectors. PRD 66:103513

  94. Gratier P, Braine J, Rodriguez-Fernandez NJ et al (2010) Molecular and atomic gas in the Local Group galaxy M 33. A&A 522:A3

  95. Graves GJ, Faber SM (2010) Dissecting the red sequence. III. Mass-to-light variations in three-dimensional fundamental plane space. ApJ 717:803

  96. Green AM (2016) Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function. PRD 94:063530

  97. Grillo C, Gobat R, Lombardi M, Rosati P (2009) Photometric mass and mass decomposition in early-type lens galaxies. A&A 501:461

  98. Gurovich S, McGaugh SS, Freeman KC (2004) The baryonic Tully–Fisher relation. PASA 21:412

  99. Hammer F, Yang Y, Arenou F, Babusiaux C, Wang J, Puech M, Flores H (2018) Galactic forces rule the dynamics of milky way dwarf galaxies. Astrophys J 860(1):76. https://doi.org/10.3847/1538-4357/aac3da

  100. Hessman FV (2017) Estimating the baryonic masses of face-on spiral galaxies from stellar kinematics. MNRAS 469:1147

  101. Hoekstra H, Jain B (2008) Weak gravitational lensing and its cosmological applications. Annu Rev Nucl Part Sci 58:99

  102. Honma M, Nagayama T, Ando K et al (2012) Fundamental parameters of the Milky Way galaxy based on VLBI astrometry. PASJ 64:136

  103. Hudson MJ, Gillis BR, Coupon J et al (2015) CFHTLenS: co-evolution of galaxies and their dark matter haloes. MNRAS 447:298

  104. Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. PRD 95:043541

  105. Hyde JB, Bernardi M (2009) The luminosity and stellar mass Fundamental Plane of early-type galaxies. MNRAS 396:1171

  106. Impey C, Bothun G, Malin D (1988) Virgo dwarfs—new light on faint galaxies. ApJ 330:634

  107. Jorgensen I, Franx M, Kjaergaard P (1996) The fundamental plane for cluster E and S0 galaxies. MNRAS 280:167

  108. Jungman G, Kamionkowski M, Griest K (1996) Supersymmetric dark matter. Phys Rep 267:195

  109. Jurić M, Ivezić Ž, Brooks A (2008) The Milky Way tomography with SDSS. I. Stellar number density distribution. ApJ 673:864

  110. Kang S, Scopel S, Tomar G, Yoon J-H (2018) Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings. ArXiv e-print. arXiv:1805.06113

  111. Kaplinghat M, Linden T, Yu H-B (2015) Galactic center excess in \(\gamma \) rays from annihilation of self-interacting dark matter. PRL 114:211303

  112. Karukes EV, Salucci P (2017) The universal rotation curve of dwarf disc galaxies. MNRAS 465:4703

  113. Karukes EV, Salucci P, Gentile G (2015) The dark matter distribution in the spiral NGC 3198 out to 0.22 R\(_{{\rm vir}}\). A&A 578:A13

  114. Kennedy R, Frenk C, Cole S, Benson A (2014) Constraining the warm dark matter particle mass with Milky Way satellites. MNRAS 442:2487

  115. Klypin A, Trujillo-Gomez S, Primack J (2011) Dark matter halos in the standard cosmological model: results from the Bolshoi simulation. ApJ 740:102

  116. Kolb EW, Turner MS (1990) The early universe. Addison Wesley, New York

  117. Kormendy J, Freeman KC (2004) Scaling laws for dark matter halos in late-type and dwarf spheroidal galaxies. In: Ryder SD et al (eds) Dark matter in galaxies (IAU S220). ASP, San Francisco, p 377

  118. Korsaga M, Carignan C, Amram P et al (2018) GHASP: an H\(\alpha \) kinematical survey of spiral galaxies—XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry. MNRAS 478:50

  119. Koushiappas SM, Loeb A (2017) Dynamics of dwarf galaxies disfavor stellar-mass black holes as dark matter. PRL 119:041102

  120. Kregel M, van der Kruit PC, de Grijs R (2002) Flattening and truncation of stellar discs in edge-on spiral galaxies. MNRAS 334:646

  121. Kusenko A (2009) Sterile neutrinos: the dark side of the light fermions. Phys Rep 481:1

  122. Kuzio de Naray R, McGaugh SS, de Blok WJG (2008) Mass models for low surface brightness galaxies with high-resolution optical velocity fields. ApJ 676:920

  123. Lapi A, Salucci P, Danese L (2018) Precision scaling relations for disk galaxies in the local universe. ApJ 859:2

  124. Lelli F, McGaugh SS, Schombert JM (2016a) The small scatter of the baryonic Tully–Fisher relation. ApJL 816:L14

  125. Lelli F, McGaugh SS, Schombert JM (2016b) SPARC: mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. AJ 152:157

  126. Li B, Shapiro PR, Rindler-Daller T (2017) Bose–Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: new cosmological constraints and its detectability by LIGO. PRD 96:063505

  127. Lisanti M (2017) Lectures on dark matter physics. In: Polchinski J, Vieira P, DeWolfe O (eds) New frontiers in fields and strings. World Scientific, Singapore, pp 399–446

  128. Magoulas C, Springob CM, Colless M et al (2012) The 6dF Galaxy Survey: the near-infrared Fundamental Plane of early-type galaxies. MNRAS 427:245

  129. Mamon G, Lokas EL (2005) Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. MNRAS 363:705

  130. Maraston C (2013) In: Thomas D, Pasquali A, Ferreras I (eds) The intriguing life of massive galaxies (IAU S295). Cambridge University Press, Cambridge, p 272

  131. Martinsson T, Verheijen M, Westfall K et al (2013) The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies. A&A 557:131

  132. Matteucci F (2012) Chemical evolution of galaxies. Springer, Berlin

  133. McGaugh SS (2005) The baryonic Tully–Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. ApJ 632:859

  134. McGaugh SS, Schombert JM, Bothun GD, de Blok WJG (2000) The baryonic Tully–Fisher relation. ApJL 533:L99

  135. McMillan PJ (2011) Mass models of the Milky Way. MNRAS 414:2446

  136. Moster BP, Somerville RS, Maulbetsch C et al (2010) Constraints on the relationship between stellar mass and halo mass at low and high redshift. ApJ 710:903

  137. Müller O, Pawlowski MS, Jerjen T et al (2018) A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 359:534

  138. Munshi D, Valageas P, van Waerbeke L, Heavens A (2008) Cosmology with weak lensing surveys. Phys Rep 462:67

  139. Naab T, Ostriker JP (2017) Theoretical challenges in galaxy formation. ARAA 55:59

  140. Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. ApJ 490:493

  141. Nesti F, Salucci P (2013) The dark matter halo of the Milky Way, AD 2013. JCAP 7:16

  142. Noordermeer E, van der Hulst JM, Sancisi R et al (2007) The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties. MNRAS 376:1513

  143. Oguri M et al (2014) The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. MNRAS 439:2494

  144. Oh S-H (2008) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 136:2761

  145. Oh S-H, Brook C, Governato F (2011) Dark and luminous matter in THINGS dwarf galaxies. AJ 142:24

  146. Oh S-H, Hunter DA, Brinks E et al (2015) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 149:180

  147. Oman KA, Navarro JF, Fattahi A et al (2015) The unexpected diversity of dwarf galaxy rotation curves. MNRAS 452:3650

  148. Palunas P, Williams TB (2000) Maximum disk mass models for spiral galaxies. AJ 120:2884

  149. Pascale R, Posti L, Nipoti C, Binney J (2018) Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax. MNRAS 480:927

  150. Pato M, Iocco F (2017) galkin: a new compilation of Milky Way rotation curve data. SoftwareX 6:54

  151. Persic M, Salucci P (1990) Mass decomposition of spiral galaxies from disc kinematics. MNRAS 245:577

  152. Persic M, Salucci P (1991) The universal galaxy rotation curve. ApJ 368:60

  153. Persic M, Salucci P (1995) Rotation curves of 967 spiral galaxies. ApJS 99:501

  154. Persic M, Salucci P, Stel F (1996) The universal rotation curve of spiral galaxies—I. The dark matter connection. MNRAS 281:27

  155. Collaboration Planck, Ade PAR, Aghanim N (2016) Planck 2015 results. XIII. Cosmological parameters. A&A 594:A13

  156. Plummer HC (1915) The distribution of stars in globular clusters. MNRAS 76:107

  157. Poci A, Cappellari M, McDermid RM (2017) Systematic trends in total-mass profiles from dynamical models of early-type galaxies. MNRAS 467:1397

  158. Ponomareva AA, Verheijen MAW, Papastergis E (2018) The multiwavelength Tully–Fisher relation with spatially resolved HI kinematics. MNRAS 474:4366

  159. Posacki S, Cappellari M, Treu T et al (2015) The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS\(^{3D}\) and Sloan Lens ACS galaxies. MNRAS 446:493

  160. Pulsoni C, Gerhard O, Arnaboldi M et al (2017) The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: the kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass. A&A 618:A94

  161. Ratnam C, Salucci P (2000) The mass distribution in the innermost regions of spiral galaxies. NewA 5:427

  162. Richards EE, van Zee L, Barnes KL (2015) Baryonic distributions in galaxy dark matter haloes—II. Final results. MNRAS 449:3981

  163. Ringwald A (2012) Exploring the role of axions and other WISPs in the dark universe. Phys Dark Univ 1:116

  164. Roberts MS (1978) The rotation curves of galaxies. AJ 83:1026

  165. Roszkowski L, Sessolo EM, Trojanowski S (2017) WIMP dark matter candidates and searches—current status and future prospects. Rep Prog Phys 81:066201

  166. Rubin VC, Ford WK Jr, Thonnard N (1980) Rotational properties of 21 Sc galaxies with a large range of luminosities and radii, from NGC 4605 (\(R = 4\) kpc) to UGC 2885 (\(R = 122\) kpc). ApJ 238:471

  167. Salucci P (2001) The constant-density region of the dark haloes of spiral galaxies. MNRAS 320:L1

  168. Salucci P, Burkert A (2000) Dark matter scaling relations. ApJL 537:L9

  169. Salucci P, Turini N (2017) Evidences for collisional dark matter in galaxies? ArXiv e-print. arXiv:1707.01059

  170. Salucci P, Frenk CS, Persic M (1993) A physical distance indicator for spiral galaxies and the determination of \(H_0\). MNRAS 262:392

  171. Salucci P, Lapi A, Tonini C, Gentile G, Yegorova I, Klein U (2007) The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. MNRAS 378:41

  172. Salucci P, Yegorova IA, Drory N (2008) The disc mass of spiral galaxies. MNRAS 388:159

  173. Salucci P, Nesti F, Gentile G, Frigerio Martins C (2010) Dark matter scaling relations. A&A 523:83

  174. Salucci P, Wilkinson MI, Walker MG et al (2012) Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. MNRAS 420:2034

  175. Schneider P (1996) Detection of (dark) matter concentrations via weak gravitational lensing. MNRAS 283:837

  176. Serra P, Oosterloo T, Cappellari M, den Heijer M, Jozsa GIG (2016) Linear relation between HI circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles. MNRAS 460:1382

  177. Shankar F, Lapi A, Salucci P (2006) New relationships between galaxy properties and host halo mass, and the role of feedbacks in galaxy formation. ApJ 643:14

  178. Shi X, Fuller GM (1999) New dark matter candidate: nonthermal sterile neutrinos. PRL 82:2832

  179. Shi D (2017) Deep imaging of the HCG 95 field. I. Ultra-diffuse galaxies. ApJ 846:26

  180. Simon JD, Bolatto AD, Leroy A, Blitz L, Gates EL (2005) High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys J 621(2):757–776. https://doi.org/10.1086/427684

  181. Sofue Y (2013) Rotation curve and mass distribution in the galactic center—from black hole to entire galaxy. PASJ 65:118

  182. Sofue Y (2017) Rotation and mass in the Milky Way and spiral galaxies. PASJ 69:R1

  183. Somerville RS, Dave R (2015) Physical models of galaxy formation in a cosmological framework. ARAA 53:51

  184. Spano M, Marcelin M, Amram P et al (2008) GHASP: an H\(\alpha \) kinematic survey of spiral and irregular galaxies—V. Dark matter distribution in 36 nearby spiral galaxies. MNRAS 383:297

  185. Spekkens K, Giovanelli R, Haynes MP (2005) The cusp/core problem in galactic halos: long-slit spectra for a large dwarf galaxy sample. AJ 129:2119

  186. Spergel DN, Steinhardt PJ (2000) Observational evidence for self-interacting cold dark matter. PRL 84:3760

  187. Steigman S, Turner MS (1985) Cosmological constraints on the properties of weakly interacting massive particles. Nucl Phys B 253:375

  188. Strauss MJ, Willick JA (1995) The density and peculiar velocity fields of nearby galaxies. Phys Rep 261:271

  189. Strigari LE, Bullock JS, Kaplinghat M et al (2008) A common mass scale for satellite galaxies of the Milky Way. Nature 454:1096

  190. Strigari LE, Frenk CS, White SDM (2018) Dynamical constraints on the dark matter distribution of the sculptor dwarf spheroidal from stellar proper motions. ApJ 860:56

  191. Thomas J, Saglia RP, Bender R et al (2011) Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. MNRAS 415:545

  192. Tinsley BM (1981) Correlation of the dark mass in galaxies with Hubble type. MNRAS 194:63

  193. Tiret O, Salucci P, Bernardi M, Maraston C, Pforr J (2011) The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of \(z \sim 2\) galaxies. MNRAS 411:1435

  194. Toloba E, Lim S, Peng E et al (2018) Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. ApJL 856:L31

  195. Tortora C, La Barbera F, Napolitano NR et al (2014) Systematic variations of central mass density slopes in early-type galaxies. MNRAS 445:115

  196. Tortora C, Napolitano NR, Roy N et al (2018) The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey. MNRAS 473:969

  197. Treu T (2010) Strong lensing by galaxies. ARAA 48:87

  198. Tulin S, Yu H, Zurek KM (2013) Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure. PRD 87:115007

  199. Tully RB, Fisher JR (1977) A new method of determining distances to galaxies. A&A 54:661

  200. Turner MS (2018) \(\varLambda \)CDM: much more than we expected, but now less than what we want. Found Phys 48:1261

  201. van Albada TS, Bahcall JN, Begeman K et al (1985) Distribution of dark matter in the spiral galaxy NGC 3198. ApJ 295:305

  202. van der Kruit PC (1988) The three-dimensional distribution of light and mass in disks of spiral galaxies. A&A 192:117

  203. van der Kruit PC, Freeman KC (2011) Galaxy disks. ARAA 49:301–371

  204. van der Kruit PC, Searle L (1981) Surface photometry of edge-on spiral galaxies. I—a model for the three-dimensional distribution of light in galactic disks. A&A 95:105

  205. van Dokkum PG, Romanowsky AJ, Abraham R et al (2015) Spectroscopic confirmation of the existence of large, diffuse galaxies in the coma cluster. ApJL 804:L26

  206. Verheijen MAW (2001) The ursa major cluster of galaxies. V. HI rotation curve shapes and the Tully–Fisher relations. ApJ 563:694

  207. Viel M, Branchini E, Cen R et al (2005) Tracing the warm-hot intergalactic medium in the local Universe. MNRAS 360:1110

  208. Vogelsberger M, Genel S, Springel V et al (2014) Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509:177

  209. Vogt NP, Haynes MP, Herter T, Giovanelli R (2004a) \(M/L\), H\(\alpha \) rotation curves, and HI gas measurements for 329 nearby cluster and field spirals. III. Evolution in fundamental galaxy parameters. AJ 127:3273

  210. Vogt NP, Haynes MP, Herter T, Giovanelli R (2004b) \(M/L\), H\(\alpha \) rotation curves, and HI measurements for 329 nearby cluster and field spirals. I. Data. AJ 127:3325

  211. Walker M (2013) Dark matter in the galactic dwarf spheroidal satellites. In: Oswalt TD, Gilmore G (eds) Planets, stars and stellar systems 5. Springer, Dordrecht, pp 1039–1089

  212. Walker MG, Penarrubia J (2011) A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. ApJ 742:20

  213. Walker MG, Mateo M, Olszewski EW (2009a) Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. AJ 137:3100

  214. Walker MG, Mateo M, Olszewski EW et al (2009b) A universal mass profile for dwarf spheroidal galaxies? ApJ 704:1274

  215. Wang J, Fu J, Aumer M et al (2014) An observational and theoretical view of the radial distribution of HI gas in galaxies. MNRAS 441:2159

  216. Watkins LL, Evans NW, An JH (2010) The masses of the Milky Way and Andromeda galaxies. MNRAS 406:264

  217. Wechsler RH, Tinker JL (2018) The connection between galaxies and their dark matter halos. ARAA 56:435

  218. Wechsler RH, Zentner AR, Bullock JS et al (2006) The dependence of halo clustering on halo formation history, concentration, and occupation. ApJ 652:71

  219. Weinberg S (1978) A new light boson? PRL 40:223

  220. Wolf J, Martinez GD, Bullock JS et al (2010) Accurate masses for dispersion-supported galaxies. MNRAS 406:1220

  221. Xue XX et al (2008) The Milky Way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of \(\sim \)2400 SDSS blue horizontal-branch stars. ApJ 684:1143

  222. Yegorova IA, Salucci P (2007) The radial Tully–Fisher relation for spiral galaxies—I. MNRAS 377:507

  223. Zaritsky D (2012) Implications and applications of kinematic galaxy scaling relations. ISRN Astron Astrophys 2012:189625

  224. Zavala J, Vogelsberger M, Walker MG (2013) Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. MNRAS 431:L20

  225. Zhao H (1996) Analytical models for galactic nuclei. MNRAS 278:488

  226. Zu Y, Mandelbaum R (2015) Mapping stellar content to dark matter haloes using galaxy clustering and galaxy-galaxy lensing in the SDSS DR7. MNRAS 454:1161

Download references

Acknowledgements

I thank Francesca Matteucci for motivating me towards the enterprise of writing this review. I thank N. Turini, V. Gammaldi, F. Nesti, M. Cobal, A. Bressan, M. Cappellari, G. Danese, A. Lapi, C. Frenk, C. Baccigalupi, A. Pillepich, M. F. de Laurentis, R. Valdarnini and C. di Paolo for very useful discussions. I thank Brigitte Greinoecker for help in the process of writing this review.

Author information

Correspondence to Paolo Salucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salucci, P. The distribution of dark matter in galaxies. Astron Astrophys Rev 27, 2 (2019). https://doi.org/10.1007/s00159-018-0113-1

Download citation

Keywords

  • Dark matter
  • Galaxies
  • Cosmology
  • Elementary particles