Advertisement

High-precision stellar abundances of the elements: methods and applications

  • Poul Erik Nissen
  • Bengt Gustafsson
Review Article
  • 258 Downloads

Abstract

Efficient spectrographs at large telescopes have made it possible to obtain high-resolution spectra of stars with high signal-to-noise ratio and advances in model atmosphere analyses have enabled estimates of high-precision differential abundances of the elements from these spectra, i.e. with errors in the range 0.01–0.03 dex for F, G, and K stars. Methods to determine such high-precision abundances together with precise values of effective temperatures and surface gravities from equivalent widths of spectral lines or by spectrum synthesis techniques are outlined, and effects on abundance determinations from using a 3D non-LTE analysis instead of a classical 1D LTE analysis are considered. The determination of high-precision stellar abundances of the elements has led to the discovery of unexpected phenomena and relations with important bearings on the astrophysics of galaxies, stars, and planets, i.e. (i) Existence of discrete stellar populations within each of the main Galactic components (disk, halo, and bulge) providing new constraints on models for the formation of the Milky Way. (ii) Differences in the relation between abundances and elemental condensation temperature for the Sun and solar twins suggesting dust-cleansing effects in proto-planetary disks and/or engulfment of planets by stars; (iii) Differences in chemical composition between binary star components and between members of open or globular clusters showing that star- and cluster-formation processes are more complicated than previously thought; (iv) Tight relations between some abundance ratios and age for solar-like stars providing new constraints on nucleosynthesis and Galactic chemical evolution models as well as the composition of terrestrial exoplanets. We conclude that if stellar abundances with precisions of 0.01–0.03 dex can be achieved in studies of more distant stars and stars on the giant and supergiant branches, many more interesting future applications, of great relevance to stellar and galaxy evolution, are probable. Hence, in planning abundance surveys, it is important to carefully balance the need for large samples of stars against the spectral resolution and signal-to-noise ratio needed to obtain high-precision abundances. Furthermore, it is an advantage to work differentially on stars with similar atmospheric parameters, because then a simple 1D LTE analysis of stellar spectra may be sufficient. However, when determining high-precision absolute abundances or differential abundance between stars having more widely different parameters, e.g. metal-poor stars compared to the Sun or giants to dwarfs, then 3D non-LTE effects must be taken into account.

Keywords

Techniques: spectroscopic Stars: abundances Stars: fundamental parameters Planet–star interactions Galaxy: disk Galaxy: halo Galaxy: bulge Galaxy: evolution 

Notes

Acknowledgements

The anonymous referee as well as Anish Amarsi, Paula Jofré, Karin Lind, Jorge Meléndez, and Nils Ryde are thanked for critical reading of a first version of the manuscript and for many helpful suggestions for improvements. Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant DNRF106).

References

  1. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys Rev Lett 119(16):161101.  https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 ADSCrossRefGoogle Scholar
  2. Adams FC (2010) The Birth Environment of the Solar System. ARA&A 48:47–85.  https://doi.org/10.1146/annurev-astro-081309-130830. arXiv:1001.5444 ADSCrossRefGoogle Scholar
  3. Adibekyan VZ, Sousa SG, Santos NC, Delgado Mena E, González Hernández JI, Israelian G, Mayor M, Khachatryan G (2012) Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets. A&A 545:A32.  https://doi.org/10.1051/0004-6361/201219401. arXiv:1207.2388 ADSCrossRefGoogle Scholar
  4. Adibekyan VZ, González Hernández JI, Delgado Mena E, Sousa SG, Santos NC, Israelian G, Figueira P, Bertran de Lis S (2014) On the origin of stars with and without planets. \(T_{c}\) trends and clues to Galactic evolution. A&A 564:L15.  https://doi.org/10.1051/0004-6361/201423435. arXiv:1404.4514 ADSCrossRefGoogle Scholar
  5. Allard F, Homeier D, Freytag B (2012) Models of very-low-mass stars, brown dwarfs and exoplanets. Philos Trans R Soc London, Ser A 370:2765–2777.  https://doi.org/10.1098/rsta.2011.0269. arXiv:1112.3591 ADSCrossRefGoogle Scholar
  6. Amarsi AM, Asplund M (2017) The solar silicon abundance based on 3D non-LTE calculations. MNRAS 464:264–273.  https://doi.org/10.1093/mnras/stw2445. arXiv:1609.07283 ADSCrossRefGoogle Scholar
  7. Amarsi AM, Asplund M, Collet R, Leenaarts J (2016a) Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres. MNRAS 455:3735–3751.  https://doi.org/10.1093/mnras/stv2608. arXiv:1511.01155 ADSCrossRefGoogle Scholar
  8. Amarsi AM, Lind K, Asplund M, Barklem PS, Collet R (2016b) Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars. MNRAS 463:1518–1533.  https://doi.org/10.1093/mnras/stw2077. arXiv:1608.06390 ADSCrossRefGoogle Scholar
  9. Amarsi AM, Barklem PS, Asplund M, Collet R, Zatsarinny O (2018a) Inelastic O+H collisions and the O i 777 nm solar centre-to-limb variation. A&A 616:A89.  https://doi.org/10.1051/0004-6361/201832770. arXiv:1803.10531 ADSCrossRefGoogle Scholar
  10. Amarsi AM, Nordlander T, Barklem PS, Asplund M, Collet R, Lind K (2018b) Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation. A&A 615:A139.  https://doi.org/10.1051/0004-6361/201732546. arXiv:1804.02305 ADSCrossRefGoogle Scholar
  11. Anglada-Escudé G, Amado PJ, Barnes J, Berdiñas ZM, Butler RP, Coleman GAL, de La Cueva I, Dreizler S, Endl M, Giesers Bea (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440.  https://doi.org/10.1038/nature19106. arXiv:1609.03449 ADSCrossRefGoogle Scholar
  12. Anstee SD, O’Mara BJ (1991) An investigation of Brueckner’s theory of line broadening with application to the sodium D lines. MNRAS 253:549–560.  https://doi.org/10.1093/mnras/253.3.549 ADSCrossRefGoogle Scholar
  13. Anstee SD, O’Mara BJ (1995) Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen. MNRAS 276:859–866.  https://doi.org/10.1093/mnras/276.3.859 ADSCrossRefGoogle Scholar
  14. Argast D, Samland M, Gerhard OE, Thielemann FK (2000) Metal-poor halo stars as tracers of ISM mixing processes during halo formation. A&A 356:873–887 arXiv:astro-ph/9911178 ADSGoogle Scholar
  15. Arnone E, Ryan SG, Argast D, Norris JE, Beers TC (2005) Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing. A&A 430:507–522.  https://doi.org/10.1051/0004-6361:20041034. arXiv:astro-ph/0410180 ADSCrossRefGoogle Scholar
  16. Asplund M (2005) New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity. ARA&A 43:481–530.  https://doi.org/10.1146/annurev.astro.42.053102.134001 ADSCrossRefGoogle Scholar
  17. Asplund M, Ludwig HG, Nordlund Å, Stein RF (2000a) The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation. A&A 359:669–681 arXiv:astro-ph/0005319 ADSGoogle Scholar
  18. Asplund M, Nordlund Å, Trampedach R, Allende Prieto C, Stein RF (2000b) Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries. A&A 359:729–742 arXiv:astro-ph/0005320 ADSGoogle Scholar
  19. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The Chemical Composition of the Sun. ARA&A 47:481–522.  https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948 ADSCrossRefGoogle Scholar
  20. Baraffe I, Chabrier G (2010) Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars. A&A 521:A44.  https://doi.org/10.1051/0004-6361/201014979. arXiv:1008.4288 ADSCrossRefGoogle Scholar
  21. Barklem PS (2016a) Accurate abundance analysis of late-type stars: advances in atomic physics. A&A Rev 24:9.  https://doi.org/10.1007/s00159-016-0095-9. arXiv:1604.07659 ADSCrossRefGoogle Scholar
  22. Barklem PS (2016b) Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca. Phys. Rev. A 93(4):042705.  https://doi.org/10.1103/PhysRevA.93.042705. arXiv:1603.07097 ADSCrossRefGoogle Scholar
  23. Barklem PS (2018) Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron. A&A 612:A90.  https://doi.org/10.1051/0004-6361/201732365. arXiv:1801.07050 ADSCrossRefGoogle Scholar
  24. Barklem PS, Piskunov N, O’Mara BJ (2000) Self-broadening in Balmer line wing formation in stellar atmospheres. A&A 363:1091–1105 arXiv:astro-ph/0010022 ADSGoogle Scholar
  25. Baschek B (1959) Aufbau und chemische Zusammensetzung der Atmosphäre des Subdwarfs HD 140283. Z. Astrophys. 48:95ADSGoogle Scholar
  26. Bastian N, Lardo C (2018) Multiple Stellar Populations in Globular Clusters. ARA&A 56:83–136.  https://doi.org/10.1146/annurev-astro-081817-051839. arXiv:1712.01286 ADSCrossRefGoogle Scholar
  27. Basu S, Antia HM (2004) Constraining Solar Abundances Using Helioseismology. ApJL 606:L85–L88.  https://doi.org/10.1086/421110. arXiv:astro-ph/0403485 ADSCrossRefGoogle Scholar
  28. Basu S, Antia HM (2013) Revisiting the Issue of Solar Abundances. J Phys: Conf Ser 440:012017.  https://doi.org/10.1088/1742-6596/440/1/012017 CrossRefGoogle Scholar
  29. Beck PG, Allende Prieto C, Van Reeth T, Tkachenko A, Raskin G, van Winckel H, do Nascimento JD Jr, Salabert D, Corsaro E, García RA (2016) The HERMES solar atlas and the spectroscopic analysis of the seismic solar analogue KIC 3241581. A&A 589:A27.  https://doi.org/10.1051/0004-6361/201425423. arXiv:1511.06583 ADSCrossRefGoogle Scholar
  30. Bedell M, Meléndez J, Bean JL, Ramírez I, Leite P, Asplund M (2014) Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision. ApJ 795:23.  https://doi.org/10.1088/0004-637X/795/1/23. arXiv:1409.1230 ADSCrossRefGoogle Scholar
  31. Bedell M, Bean JL, Meléndez J, Spina L, Ramírez I, Asplund M, Alves-Brito A, dos Santos L, Dreizler S, Yong D, Monroe T, Casagrande L (2018) The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood. ApJ 865:68.  https://doi.org/10.3847/1538-4357/aad908. arXiv:1802.02576 ADSCrossRefGoogle Scholar
  32. Bell RA (1970) The calibration of narrow band photometry - I. Cambridge observations of G and K giants. MNRAS 148:25–52.  https://doi.org/10.1093/mnras/148.1.25 ADSCrossRefGoogle Scholar
  33. Bell RA, Dickens RJ (1980) Chemical abundances in the globular clusters M3, M13, and NGC 6752. ApJ 242:657–672.  https://doi.org/10.1086/158502 ADSCrossRefGoogle Scholar
  34. Bell RA, Edvardsson B, Gustafsson B (1985) The surface gravity of Arcturus from MgH lines, strong metal lines and the ionization equilibrium of iron. MNRAS 212:497–515.  https://doi.org/10.1093/mnras/212.3.497 ADSCrossRefGoogle Scholar
  35. Bensby T, Feltzing S, Lundström I, Ilyin I (2005) \(\alpha \)-, \(r\)-, and \(s\)-process element trends in the Galactic thin and thick disks. A&A 433:185–203.  https://doi.org/10.1051/0004-6361:20040332. arXiv:astro-ph/0412132 ADSCrossRefGoogle Scholar
  36. Bensby T, Feltzing S, Oey MS (2014) Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. A&A 562:A71.  https://doi.org/10.1051/0004-6361/201322631. arXiv:1309.2631 ADSCrossRefGoogle Scholar
  37. Bensby T, Feltzing S, Gould A, Yee JC, Johnson JA, Asplund M, Meléndez J, Lucatello S, Howes LM, McWilliam A (2017) Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way. A&A 605:A89.  https://doi.org/10.1051/0004-6361/201730560. arXiv:1702.02971 ADSCrossRefGoogle Scholar
  38. Bergemann M (2011) Ionization balance of Ti in the photospheres of the Sun and four late-type stars. MNRAS 413:2184–2198.  https://doi.org/10.1111/j.1365-2966.2011.18295.x. arXiv:1101.0828 ADSCrossRefGoogle Scholar
  39. Bergemann M, Lind K, Collet R, Magic Z, Asplund M (2012) Non-LTE line formation of Fe in late-type stars - I. Standard stars with 1D and \(\langle \)3D\(\rangle \) model atmospheres. MNRAS 427:27–49.  https://doi.org/10.1111/j.1365-2966.2012.21687.x. arXiv:1207.2455 ADSCrossRefGoogle Scholar
  40. Bergemann M, Kudritzki RP, Würl M, Plez B, Davies B, Gazak Z (2013) Red Supergiant Stars as Cosmic Abundance Probes. II. NLTE Effects in J-band Silicon Lines. ApJ 764:115.  https://doi.org/10.1088/0004-637X/764/2/115. arXiv:1212.2649 ADSCrossRefGoogle Scholar
  41. Bergemann M, Collet R, Amarsi AM, Kovalev M, Ruchti G, Magic Z (2017) Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and \(\langle \)3D\(\rangle \) Models. I. Methods and Application to Magnesium Abundances in Standard Stars. ApJ 847:15.  https://doi.org/10.3847/1538-4357/aa88cb. arXiv:1612.07355 ADSCrossRefGoogle Scholar
  42. Bertelli Motta C, Pasquali A, Richer J, Michaud G, Salaris M, Bragaglia A, Magrini L, Randich S, Grebel EK, Adibekyan V (2018) The Gaia-ESO Survey: evidence of atomic diffusion in M67? MNRAS 478:425–438.  https://doi.org/10.1093/mnras/sty1011. arXiv:1804.06293 ADSCrossRefGoogle Scholar
  43. Bertran de Lis S, Allende Prieto C, Majewski SR, Schiavon RP, Holtzman JA, Shetrone M, Carrera R, García Pérez AE, Mészáros S, Frinchaboy PM (2016) Cosmic variance in [O/Fe] in the Galactic disk. A&A 590:A74.  https://doi.org/10.1051/0004-6361/201527827. arXiv:1603.05491 ADSCrossRefGoogle Scholar
  44. Biazzo K, Gratton R, Desidera S, Lucatello S, Sozzetti A, Bonomo AS, Damasso M, Gandolfi D, Affer L, Boccato C (2015) The GAPS programme with HARPS-N at TNG. X.Differential abundances in the XO-2 planet-hosting binary. A&A 583:A135.  https://doi.org/10.1051/0004-6361/201526375. arXiv:1506.01614 ADSCrossRefGoogle Scholar
  45. Biermann L (1932) Untersuchungen über den inneren Aufbau der Sterne. IV. Konvektionszonen im Innern der Sterne. (Veröffentlichungen der Universitäts-Sternwarte Göttingen, Nr. 27). Z. Astrophys. 5:117ADSzbMATHGoogle Scholar
  46. Blackwell DE, Willis RB (1977) Stellar gravities from metallic line profiles, with application to Arcturus. The effective temperature of Arcturus. MNRAS 180:169–176.  https://doi.org/10.1093/mnras/180.2.169 ADSCrossRefGoogle Scholar
  47. Blanco-Cuaresma S, Soubiran C, Heiter U, Jofré P (2014) Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. A&A 569:A111.  https://doi.org/10.1051/0004-6361/201423945. arXiv:1407.2608 ADSCrossRefGoogle Scholar
  48. Blanco-Cuaresma S, Soubiran C, Heiter U, Asplund M, Carraro G, Costado MT, Feltzing S, González-Hernández JI, Jiménez-Esteban F, Korn AJ (2015) Testing the chemical tagging technique with open clusters. A&A 577:A47.  https://doi.org/10.1051/0004-6361/201425232. arXiv:1503.02082 ADSCrossRefGoogle Scholar
  49. Bland-Hawthorn J, Sharma S (2016) GALAH Survey: Chemical tagging and disk reconstruction. Astron Nachr 337:894.  https://doi.org/10.1002/asna.201612393 ADSCrossRefGoogle Scholar
  50. Bland-Hawthorn J, Karlsson T, Sharma S, Krumholz M, Silk J (2010) The Chemical Signatures of the First Star Clusters in the Universe. ApJ 721:582–596.  https://doi.org/10.1088/0004-637X/721/1/582. arXiv:1007.5374 ADSCrossRefGoogle Scholar
  51. Boesgaard AM, Tripicco MJ (1986) Lithium in the Hyades Cluster. ApJL 302:L49–L53.  https://doi.org/10.1086/184635 ADSCrossRefGoogle Scholar
  52. Bond JC, O’Brien DP, Lauretta DS (2010) The Compositional Diversity of Extrasolar Terrestrial Planets. I. In Situ Simulations. ApJ 715:1050–1070.  https://doi.org/10.1088/0004-637X/715/2/1050. arXiv:1004.0971 ADSCrossRefGoogle Scholar
  53. Brewer JM, Fischer DA (2016) C/O and Mg/Si Ratios of Stars in the Solar Neighborhood. ApJ 831:20.  https://doi.org/10.3847/0004-637X/831/1/20 ADSCrossRefGoogle Scholar
  54. Brewer JM, Fischer DA, Basu S, Valenti JA, Piskunov N (2015) Accurate Gravities of F, G, and K stars from High Resolution Spectra Without External Constraints. ApJ 805:126.  https://doi.org/10.1088/0004-637X/805/2/126. arXiv:1503.07180 ADSCrossRefGoogle Scholar
  55. Brewer JM, Fischer DA, Valenti JA, Piskunov N (2016) Spectral Properties of Cool Stars: Extended Abundance Analysis of 1,617 Planet-search Stars. ApJS 225:32.  https://doi.org/10.3847/0067-0049/225/2/32. arXiv:1606.07929 ADSCrossRefGoogle Scholar
  56. Buder S, Asplund M, Duong L, Kos J, Lind K, Ness MK, Sharma S, Bland-Hawthorn J, Casey AR, De Silva GM (2018) The GALAH Survey: second data release. MNRAS 478:4513–4552.  https://doi.org/10.1093/mnras/sty1281. arXiv:1804.06041 ADSCrossRefGoogle Scholar
  57. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the Elements in Stars. Rev Mod Phys 29:547–650.  https://doi.org/10.1103/RevModPhys.29.547 ADSCrossRefGoogle Scholar
  58. Busso M, Gallino R, Lambert DL, Travaglio C, Smith VV (2001) Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed \(s\)-Process Abundances. ApJ 557:802–821.  https://doi.org/10.1086/322258. arXiv:astro-ph/0104424 ADSCrossRefGoogle Scholar
  59. Carigi L, Peimbert M, Esteban C, García-Rojas J (2005) Carbon, Nitrogen, and Oxygen Galactic Gradients: A Solution to the Carbon Enrichment Problem. ApJ 623:213–224.  https://doi.org/10.1086/428491. arXiv:astro-ph/0408398 ADSCrossRefGoogle Scholar
  60. Carlos M, Nissen PE, Meléndez J (2016) Correlation between lithium abundances and ages of solar twin stars. A&A 587:A100.  https://doi.org/10.1051/0004-6361/201527478. arXiv:1601.05054 ADSCrossRefGoogle Scholar
  61. Carretta E, Bragaglia A, Gratton R, Lucatello S (2009) Na-O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. A&A 505:139–155.  https://doi.org/10.1051/0004-6361/200912097. arXiv:0909.2941 ADSCrossRefGoogle Scholar
  62. Carter-Bond JC, O’Brien DP, Delgado Mena E, Israelian G, Santos NC, González Hernández JI (2012) Low Mg/Si Planetary Host Stars and Their Mg-depleted Terrestrial Planets. ApJL 747:L2.  https://doi.org/10.1088/2041-8205/747/1/L2. arXiv:1201.1939 ADSCrossRefGoogle Scholar
  63. Casagrande L, Ramírez I, Meléndez J, Bessell M, Asplund M (2010) An absolutely calibrated \(T_{{\rm eff}}\) scale from the infrared flux method. Dwarfs and subgiants. A&A 512:A54.  https://doi.org/10.1051/0004-6361/200913204. arXiv:1001.3142 ADSCrossRefGoogle Scholar
  64. Castelli F, Kurucz RL (2003) New Grids of ATLAS9 Model Atmospheres. In: Piskunov N, Weiss WW, Gray DF (eds) Modelling of Stellar Atmospheres, Astronomical Society of the Pacific, San Francisco, IAU Symposium, vol 210, p A20Google Scholar
  65. Cayrel R (1969) Comparison of Synthetic Spectra with Real Spectra. In: Gingerich O (ed) Theory and Observation of Normal Stellar Atmospheres. MIT, Cambridge, MA, p 237Google Scholar
  66. Cayrel R, Depagne E, Spite M, Hill V, Spite F, François P, Plez B, Beers T, Primas F, Andersen J et al (2004) First stars. V. Abundance patterns from C to Zn and supernova yields in the early Galaxy. A&A 416:1117–1138.  https://doi.org/10.1051/0004-6361:20034074. arXiv:astro-ph/0311082 ADSCrossRefGoogle Scholar
  67. Cayrel R, van’t Veer-Menneret C, Allard NF, Stehlé C (2011) The H\(\alpha \) Balmer line as an effective temperature criterion. I. Calibration using 1D model stellar atmospheres. A&A 531:A83.  https://doi.org/10.1051/0004-6361/201116911 ADSCrossRefGoogle Scholar
  68. Cayrel de Strobel G (1996) Stars resembling the Sun. A&A Rev 7:243–288.  https://doi.org/10.1007/s001590050006 ADSCrossRefGoogle Scholar
  69. Cayrel de Strobel G, Knowles N, Hernandez G, Bentolila C (1981) In search of real solar twins. A&A 94:1–11ADSGoogle Scholar
  70. Cescutti G, Romano D, Matteucci F, Chiappini C, Hirschi R (2015) The role of neutron star mergers in the chemical evolution of the Galactic halo. A&A 577:A139.  https://doi.org/10.1051/0004-6361/201525698. arXiv:1503.02954 ADSCrossRefGoogle Scholar
  71. Chamberlain JW, Aller LH (1951) The Atmospheres of A-Type Subdwarfs and 95 Leonis. ApJ 114:52.  https://doi.org/10.1086/145451 ADSCrossRefGoogle Scholar
  72. Chiappini C, Romano D, Matteucci F (2003) Oxygen, carbon and nitrogen evolution in galaxies. MNRAS 339:63–81.  https://doi.org/10.1046/j.1365-8711.2003.06154.x. arXiv:astro-ph/0209627 ADSCrossRefGoogle Scholar
  73. Chiavassa A, Casagrande L, Collet R, Magic Z, Bigot L, Thévenin F, Asplund M (2018) The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry. A&A 611:A11.  https://doi.org/10.1051/0004-6361/201732147. arXiv:1801.01895 ADSCrossRefGoogle Scholar
  74. Christensen-Dalsgaard J (2008) ASTEC, the Aarhus STellar Evolution Code. Ap&SS 316:13–24.  https://doi.org/10.1007/s10509-007-9675-5. arXiv:0710.3114 ADSCrossRefGoogle Scholar
  75. Christensen-Dalsgaard J, Proffitt CR, Thompson MJ (1993) Effects of diffusion on solar models and their oscillation frequencies. ApJL 403:L75–L78.  https://doi.org/10.1086/186725 ADSCrossRefGoogle Scholar
  76. Cochran WD, Hatzes AP, Butler RP, Marcy GW (1997) The Discovery of a Planetary Companion to 16 Cygni B. ApJ 483:457–463 arXiv:astro-ph/9611230 ADSCrossRefGoogle Scholar
  77. Cohen JG (1978) Abundances in globular cluster red giants. I. M3 and M13. ApJ 223:487–508.  https://doi.org/10.1086/156284 ADSCrossRefGoogle Scholar
  78. Collet R, Magic Z, Asplund M (2011) The StaggerGrid project: a grid of 3-D model atmospheres for high-precision spectroscopy. JPhys: Conf Ser 328:012003.  https://doi.org/10.1088/1742-6596/328/1/012003. arXiv:1110.5475 CrossRefGoogle Scholar
  79. Côté B, Fryer CL, Belczynski K, Korobkin O, Chruślińska M, Vassh N, Mumpower MR, Lippuner J, Sprouse TM, Surman R, Wollaeger R (2018) The Origin of \(r\)-process Elements in the Milky Way. ApJ 855:99.  https://doi.org/10.3847/1538-4357/aaad67. arXiv:1710.05875 ADSCrossRefGoogle Scholar
  80. Delgado Mena E, Israelian G, González Hernández JI, Bond JC, Santos NC, Udry S, Mayor M (2010) Chemical Clues on the Formation of Planetary Systems: C/O Versus Mg/Si for HARPS GTO Sample. ApJ 725:2349–2358.  https://doi.org/10.1088/0004-637X/725/2/2349. arXiv:1009.5224 ADSCrossRefGoogle Scholar
  81. Delgado Mena E, Israelian G, González Hernández JI, Sousa SG, Mortier A, Santos NC, Adibekyan VZ, Fernandes J, Rebolo R, Udry S, Mayor M (2014) Li depletion in solar analogues with exoplanets. Extending the sample. A&A 562:A92.  https://doi.org/10.1051/0004-6361/201321493. arXiv:1311.6414 CrossRefGoogle Scholar
  82. Demarque P, Woo JH, Kim YC, Yi SK (2004) Y\(^{2}\) Isochrones with an Improved Core Overshoot Treatment. ApJS 155:667–674.  https://doi.org/10.1086/424966 ADSCrossRefGoogle Scholar
  83. Do T, Kerzendorf W, Konopacky Q, Marcinik JM, Ghez A, Lu JR, Morris MR (2018) Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances. ApJL 855:L5.  https://doi.org/10.3847/2041-8213/aaaec3. arXiv:1802.08270 ADSCrossRefGoogle Scholar
  84. D’Orazi V, Magrini L, Randich S, Galli D, Busso M, Sestito P (2009) Enhanced Production of Barium in Low-Mass Stars: Evidence from Open Clusters. ApJL 693:L31–L34.  https://doi.org/10.1088/0004-637X/693/1/L31. arXiv:0901.2743 ADSCrossRefGoogle Scholar
  85. D’Orazi V, Biazzo K, Desidera S, Covino E, Andrievsky SM, Gratton RG (2012) The chemical composition of nearby young associations: s-process element abundances in AB Doradus, Carina-Near and Ursa Major. MNRAS 423:2789–2799.  https://doi.org/10.1111/j.1365-2966.2012.21088.x. arXiv:1204.2635 ADSCrossRefGoogle Scholar
  86. Dorn C, Khan A, Heng K, Connolly JAD, Alibert Y, Benz W, Tackley P (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? A&A 577:A83.  https://doi.org/10.1051/0004-6361/201424915. arXiv:1502.03605 ADSCrossRefGoogle Scholar
  87. Dotter A, Conroy C, Cargile P, Asplund M (2017) The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging. ApJ 840:99.  https://doi.org/10.3847/1538-4357/aa6d10. arXiv:1704.03465 ADSCrossRefGoogle Scholar
  88. Dravins D, Nordlund A (1990) Stellar Granulation - Part Five - Synthetic Spectral Lines in Disk Integrated Starlight. A&A 228:203ADSGoogle Scholar
  89. Edvardsson B, Andersen J, Gustafsson B, Lambert DL, Nissen PE, Tomkin J (1993) The Chemical Evolution of the Galactic Disk. I. Analysis and Results. A&A 275:101ADSGoogle Scholar
  90. Eggen OJ, Lynden-Bell D, Sandage AR (1962) Evidence from the motions of old stars that the Galaxy collapsed. ApJ 136:748.  https://doi.org/10.1086/147433 ADSCrossRefGoogle Scholar
  91. Epstein CR, Johnson JA, Dong S, Udalski A, Gould A, Becker G (2010) Chemical Composition of Faint (\(I \sim 21\) mag) Microlensed Bulge Dwarf OGLE-2007-BLG-514S. ApJ 709:447–457.  https://doi.org/10.1088/0004-637X/709/1/447. arXiv:0910.1358 ADSCrossRefGoogle Scholar
  92. Fabbian D, Moreno-Insertis F (2015) Continuum Intensity and [O I] Spectral Line Profiles in Solar 3D Photospheric Models: The Effect of Magnetic Fields. ApJ 802:96.  https://doi.org/10.1088/0004-637X/802/2/96. arXiv:1501.06916 ADSCrossRefGoogle Scholar
  93. Fabbian D, Moreno-Insertis F, Khomenko E, Nordlund Å (2012) Solar Fe abundance and magnetic fields. Towards a consistent reference metallicity. A&A 548:A35.  https://doi.org/10.1051/0004-6361/201219335. arXiv:1209.2771 ADSCrossRefGoogle Scholar
  94. Feltzing S, Howes LM, McMillan PJ, Stonkute E (2017) On the metallicity dependence of the [Y/Mg]-age relation for solar-type stars. MNRAS 465:L109–L113.  https://doi.org/10.1093/mnrasl/slw209. arXiv:1610.03852 ADSCrossRefGoogle Scholar
  95. Fernández-Alvar E, Carigi L, Schuster WJ, Hayes CR, Ávila-Vergara N, Majewski SR, Allende Prieto C, Beers TC, Sánchez SF, Zamora O (2018) Disentangling the Galactic Halo with APOGEE. II.Chemical and Star Formation Histories for the Two Distinct Populations. ApJ 852:50.  https://doi.org/10.3847/1538-4357/aa9ced. arXiv:1711.06225 ADSCrossRefGoogle Scholar
  96. Fischel D (1964) On the Influence of the Chemical Composition on the Structure and Metal Index of Stellar Atmospheres. ApJ 140:221.  https://doi.org/10.1086/147909 ADSCrossRefGoogle Scholar
  97. Flores M, González JF, Jaque Arancibia M, Buccino A, Saffe C (2016) Discovery of an activity cycle in the solar analog HD 45184. Exploring Balmer and metallic lines as activity proxy candidates. A&A 589:A135.  https://doi.org/10.1051/0004-6361/201628145. arXiv:1604.01307 ADSCrossRefGoogle Scholar
  98. François P, Depagne E, Hill V, Spite M, Spite F, Plez B, Beers TC, Andersen J, James G, Barbuy B et al (2007) First stars. VIII. Enrichment of the neutron-capture elements in the early Galaxy. A&A 476:935–950.  https://doi.org/10.1051/0004-6361:20077706. arXiv:0709.3454 ADSCrossRefGoogle Scholar
  99. Frebel A, Norris JE (2015) Near-Field Cosmology with Extremely Metal-Poor Stars. ARA&A 53:631–688.  https://doi.org/10.1146/annurev-astro-082214-122423. arXiv:1501.06921 ADSCrossRefGoogle Scholar
  100. Freeman K, Bland-Hawthorn J (2002) The New Galaxy: Signatures of Its Formation. ARA&A 40:487–537.  https://doi.org/10.1146/annurev.astro.40.060401.093840. arXiv:astro-ph/0208106 ADSCrossRefGoogle Scholar
  101. Freytag B, Steffen M, Ludwig HG, Wedemeyer-Böhm S, Schaffenberger W, Steiner O (2012) Simulations of stellar convection with CO5BOLD. J Comput Phys 231:919–959.  https://doi.org/10.1016/j.jcp.2011.09.026. arXiv:1110.6844 ADSCrossRefzbMATHGoogle Scholar
  102. Frohmaier C, Sullivan M, Maguire K, Nugent P (2018) The Volumetric Rate of Calcium-rich Transients in the Local Universe. ApJ 858:50.  https://doi.org/10.3847/1538-4357/aabc0b. arXiv:1804.03103 ADSCrossRefGoogle Scholar
  103. Fuhrmann K (1998) Nearby stars of the Galactic disk and halo. A&A 338:161–183ADSGoogle Scholar
  104. Fuhrmann K (2011) Nearby stars of the Galactic disc and halo - V. MNRAS 414:2893–2922.  https://doi.org/10.1111/j.1365-2966.2011.18476.x ADSCrossRefGoogle Scholar
  105. Fuhrmann K, Chini R, Kaderhandt L, Chen Z (2017) On the local stellar populations. MNRAS 464:2610–2621.  https://doi.org/10.1093/mnras/stw2526 ADSCrossRefGoogle Scholar
  106. Fulbright JP (2002) Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships. AJ 123:404–412.  https://doi.org/10.1086/324630. arXiv:astro-ph/0110164 ADSCrossRefGoogle Scholar
  107. Collaboration Gaia, Brown AGA, Vallenari A, Prusti T, de Bruijne JHJ, Babusiaux C, Bailer-Jones CAL, Biermann M, Evans DW, Eyer L (2018) Gaia Data Release 2. Summary of the contents and survey properties. A&A 616:A1.  https://doi.org/10.1051/0004-6361/201833051. arXiv:1804.09365 ADSCrossRefGoogle Scholar
  108. García Pérez AE, Allende Prieto C, Holtzman JA, Shetrone M, Mészáros S, Bizyaev D, Carrera R, Cunha K, García-Hernández DA, Johnson JA et al (2016) ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline. AJ 151:144.  https://doi.org/10.3847/0004-6256/151/6/144. arXiv:1510.07635 ADSCrossRefGoogle Scholar
  109. Genovali K, Lemasle B, da Silva R, Bono G, Fabrizio M, Bergemann M, Buonanno R, Ferraro I, François P, Iannicola G (2015) On the \(\alpha \)-element gradients of the Galactic thin disk using Cepheids. A&A 580:A17.  https://doi.org/10.1051/0004-6361/201525894. arXiv:1503.03758 ADSCrossRefGoogle Scholar
  110. Gillon M, Triaud AHMJ, Demory BO, Jehin E, Agol E, Deck KM, Lederer SM, de Wit J, Burdanov A, Ingalls JGea (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460.  https://doi.org/10.1038/nature21360. arXiv:1703.01424 ADSCrossRefGoogle Scholar
  111. Gilmore G, Reid N (1983) New light on faint stars - III. Galactic structure towards the South Pole and the Galactic thick disc. MNRAS 202:1025–1047.  https://doi.org/10.1093/mnras/202.4.1025 ADSCrossRefGoogle Scholar
  112. Gilmore G, Wyse RFG (1998) Element Ratios and the Formation of the Stellar Halo. AJ 116:748–753.  https://doi.org/10.1086/300459. arXiv:astro-ph/9805144 ADSCrossRefGoogle Scholar
  113. Gilmore G, Randich S, Asplund M, Binney J, Bonifacio P, Drew J, Feltzing S, Ferguson A, Jeffries R, Micela G et al (2012) The Gaia-ESO Public Spectroscopic Survey. The Messenger 147:25–31ADSGoogle Scholar
  114. Gonzalez G (1998) Spectroscopic analyses of the parent stars of extrasolar planetary system candidates. A&A 334:221–238ADSGoogle Scholar
  115. Gonzalez G, Laws C, Tyagi S, Reddy BE (2001) Parent Stars of Extrasolar Planets. VI. Abundance Analyses of 20 New Systems. AJ 121:432–452.  https://doi.org/10.1086/318048. arXiv:astro-ph/0010197 ADSCrossRefGoogle Scholar
  116. Gonzalez G, Carlson MK, Tobin RW (2010) Parent stars of extrasolar planets - XI. Trends with condensation temperature revisited. MNRAS 407:314–320.  https://doi.org/10.1111/j.1365-2966.2010.16900.x. arXiv:1004.3313 ADSCrossRefGoogle Scholar
  117. Gratton RG, Carretta E, Matteucci F, Sneden C (2000) Abundances of light elements in metal-poor stars. IV. [Fe/O] and [Fe/Mg] ratios and the history of star formation in the solar neighborhood. A&A 358:671–681 arXiv:astro-ph/0004157 ADSGoogle Scholar
  118. Gratton RG, Bonanno G, Claudi RU, Cosentino R, Desidera S, Lucatello S, Scuderi S (2001a) Non-interacting main-sequence binaries with different chemical compositions: Evidences of infall of rocky material? A&A 377:123–131.  https://doi.org/10.1051/0004-6361:20011066 ADSCrossRefGoogle Scholar
  119. Gratton RG, Bonifacio P, Bragaglia A, Carretta E, Castellani V, Centurion M, Chieffi A, Claudi R, Clementini G, D’Antona F et al (2001b) The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters. A&A 369:87–98.  https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457 ADSCrossRefGoogle Scholar
  120. Grevesse N, Asplund M, Sauval AJ (2007) The Solar Chemical Composition. SSRv 130:105–114.  https://doi.org/10.1007/s11214-007-9173-7 ADSCrossRefGoogle Scholar
  121. Gruyters P, Nordlander T, Korn AJ (2014) Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752. A&A 567:A72.  https://doi.org/10.1051/0004-6361/201423590. arXiv:1405.6543 ADSCrossRefGoogle Scholar
  122. Gustafsson B (1989) Chemical analyses of cool stars. ARA&A 27:701–756.  https://doi.org/10.1146/annurev.aa.27.090189.003413 ADSCrossRefGoogle Scholar
  123. Gustafsson B (2018a) Dust cleansing of star-forming gas. I. Has radiation from bright stars affected the chemical composition of the Sun and M67? A&A 616:A91.  https://doi.org/10.1051/0004-6361/201732354. arXiv:1805.00547 ADSCrossRefGoogle Scholar
  124. Gustafsson B (2018b) Dust cleansing of star-forming gas. II. Did late accretion flows change the chemical composition of the solar atmosphere? A&A arXiv:1809.02361
  125. Gustafsson B, Bell RA, Eriksson K, Nordlund A (1975) A grid of model atmospheres for metal-deficient giant stars. I. A&A 42:407–432ADSGoogle Scholar
  126. Gustafsson B, Karlsson T, Olsson E, Edvardsson B, Ryde N (1999) The origin of carbon, investigated by spectral analysis of solar-type stars in the Galactic Disk. A&A 342:426–439 arXiv:astro-ph/9811303 ADSGoogle Scholar
  127. Gustafsson B, Edvardsson B, Eriksson K, Jørgensen UG, Nordlund Å, Plez B (2008) A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. A&A 486:951–970.  https://doi.org/10.1051/0004-6361:200809724. arXiv:0805.0554 ADSCrossRefGoogle Scholar
  128. Hauschildt PH, Allard F, Baron E (1999a) The NextGen Model Atmosphere Grid for \(3000 \le T_{{\rm eff}} \le 10,000\) K. ApJ 512:377–385.  https://doi.org/10.1086/306745. arXiv:astro-ph/9807286 ADSCrossRefGoogle Scholar
  129. Hauschildt PH, Allard F, Ferguson J, Baron E, Alexander DR (1999b) The NextGen Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K. ApJ 525:871–880.  https://doi.org/10.1086/307954. arXiv:astro-ph/9907194 ADSCrossRefGoogle Scholar
  130. Hawkins K, Jofré P, Masseron T, Gilmore G (2015) Using chemical tagging to redefine the interface of the Galactic disc and halo. MNRAS 453:758–774.  https://doi.org/10.1093/mnras/stv1586. arXiv:1507.03604 ADSCrossRefGoogle Scholar
  131. Hayden MR, Bovy J, Holtzman JA, Nidever DL, Bird JC, Weinberg DH, Andrews BH, Majewski SR, Allende Prieto C, Anders F (2015) Chemical Cartography with APOGEE: Metallicity Distribution Functions and the Chemical Structure of the Milky Way Disk. ApJ 808:132.  https://doi.org/10.1088/0004-637X/808/2/132. arXiv:1503.02110 ADSCrossRefGoogle Scholar
  132. Hayes CR, Majewski SR, Shetrone M, Fernández-Alvar E, Allende Prieto C, Schuster WJ, Carigi L, Cunha K, Smith VV, Sobeck J (2018) Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations. ApJ 852:49.  https://doi.org/10.3847/1538-4357/aa9cec. arXiv:1711.05781 ADSCrossRefGoogle Scholar
  133. Haywood M, Di Matteo P, Lehnert MD, Katz D, Gómez A (2013) The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk. A&A 560:A109.  https://doi.org/10.1051/0004-6361/201321397. arXiv:1305.4663 ADSCrossRefGoogle Scholar
  134. Haywood M, Di Matteo P, Lehnert MD, Snaith O, Khoperskov S, Gómez A (2018) In Disguise or Out of Reach: First Clues about In Situ and Accreted Stars in the Stellar Halo of the Milky Way from Gaia DR2. ApJ 863:113.  https://doi.org/10.3847/1538-4357/aad235. arXiv:1805.02617 ADSCrossRefGoogle Scholar
  135. Helfer HL, Wallerstein G, Greenstein JL (1959) Abundances in Some Population II K Giants. ApJ 129:700.  https://doi.org/10.1086/146668 ADSCrossRefGoogle Scholar
  136. Helmi A, Babusiaux C, Koppelman HH, Massari D, Veljanoski J, Brown AGA (2018) The formation of two of the major structural components of the Milky Way. ArXiv e-prints arXiv:1806.06038
  137. Henyey L, Vardya MS, Bodenheimer P (1965) Studies in Stellar Evolution. III. The Calculation of Model Envelopes. ApJ 142:841.  https://doi.org/10.1086/148357 ADSCrossRefGoogle Scholar
  138. Hinkle K, Wallace L, Livingston W (1995) Infrared Atlas of the Arcturus Spectrum, 0.9–5.3 microns. PASP 107:1042.  https://doi.org/10.1086/133660 ADSCrossRefGoogle Scholar
  139. Ho AYQ, Ness MK, Hogg DW, Rix HW, Liu C, Yang F, Zhang Y, Hou Y, Wang Y (2017a) Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants. ApJ 836:5.  https://doi.org/10.3847/1538-4357/836/1/5. arXiv:1602.00303 ADSCrossRefGoogle Scholar
  140. Ho AYQ, Rix HW, Ness MK, Hogg DW, Liu C, Ting YS (2017b) Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances. ApJ 841:40.  https://doi.org/10.3847/1538-4357/aa6db3. arXiv:1609.03195 ADSCrossRefGoogle Scholar
  141. Hogg DW, Casey AR, Ness M, Rix HW, Foreman-Mackey D, Hasselquist S, Ho AYQ, Holtzman JA, Majewski SR, Martell SL (2016) Chemical Tagging Can Work: Identification of Stellar Phase-space Structures Purely by Chemical-abundance Similarity. ApJ 833:262.  https://doi.org/10.3847/1538-4357/833/2/262. arXiv:1601.05413 ADSCrossRefGoogle Scholar
  142. Holtzman JA, Shetrone M, Johnson JA, Allende Prieto C, Anders F, Andrews B, Beers TC, Bizyaev D, Blanton MR, Bovy J (2015) Abundances, Stellar Parameters, and Spectra from the SDSS-III/APOGEE Survey. AJ 150:148.  https://doi.org/10.1088/0004-6256/150/5/148. arXiv:1501.04110 ADSCrossRefGoogle Scholar
  143. Ishigaki M, Chiba M, Aoki W (2010) Chemical Abundances of Outer Halo Stars in the Milky Way. PASJ 62:143–178.  https://doi.org/10.1093/pasj/62.1.143. arXiv:0912.0329 ADSCrossRefGoogle Scholar
  144. Jofré P, Das P, Bertranpetit J, Foley R (2017a) Cosmic phylogeny: reconstructing the chemical history of the solar neighbourhood with an evolutionary tree. MNRAS 467:1140–1153.  https://doi.org/10.1093/mnras/stx075. arXiv:1611.02575 ADSCrossRefGoogle Scholar
  145. Jofré P, Heiter U, Buder S (2017b) Gaia FGK benchmark stars: a bridge between spectroscopic surveys. In: Coelho P, Martins L, Griffin E (eds) 3rd International Workshop on Spectral Stellar Libraries, Astronomical Society of India, ASI Conference Series, vol 14, pp 37–44, arXiv:1709.09366
  146. Kallinger T, Hekker S, García RA, Huber D, Matthews JM (2016) Precise stellar surface gravities from the time scales of convectively driven brightness variations. Sci Adv 2:1500654.  https://doi.org/10.1126/sciadv.1500654 ADSCrossRefGoogle Scholar
  147. Karakas AI (2010) Updated stellar yields from asymptotic giant branch models. MNRAS 403:1413–1425.  https://doi.org/10.1111/j.1365-2966.2009.16198.x. arXiv:0912.2142 ADSCrossRefGoogle Scholar
  148. Karakas AI, Lugaro M (2016) Stellar Yields from Metal-rich Asymptotic Giant Branch Models. ApJ 825:26.  https://doi.org/10.3847/0004-637X/825/1/26. arXiv:1604.02178 ADSCrossRefGoogle Scholar
  149. Karlsson T, Gustafsson B (2005) Stochastic chemical enrichment in metal-poor systems. II. Abundance ratios and scatter. A&A 436:879–894.  https://doi.org/10.1051/0004-6361:20042168. arXiv:astro-ph/0504617 ADSCrossRefGoogle Scholar
  150. Kirby EN, Guhathakurta P, Bolte M, Sneden C, Geha MC (2009) Multi-element Abundance Measurements from Medium-resolution Spectra. I. The Sculptor Dwarf Spheroidal Galaxy. ApJ 705:328–346.  https://doi.org/10.1088/0004-637X/705/1/328. arXiv:0909.3092 ADSCrossRefGoogle Scholar
  151. Kiselman D, Pereira TMD, Gustafsson B, Asplund M, Meléndez J, Langhans K (2011) Is the solar spectrum latitude-dependent?. An investigation with SST/TRIPPEL. A&A 535:A14.  https://doi.org/10.1051/0004-6361/201117553. arXiv:1108.4527 ADSCrossRefGoogle Scholar
  152. Kobayashi C, Umeda H, Nomoto K, Tominaga N, Ohkubo T (2006) Galactic Chemical Evolution: Carbon through Zinc. ApJ 653:1145–1171.  https://doi.org/10.1086/508914. arXiv:astro-ph/0608688 ADSCrossRefGoogle Scholar
  153. Koppelman H, Helmi A, Veljanoski J (2018) One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2. ApJL 860:L11.  https://doi.org/10.3847/2041-8213/aac882. arXiv:1804.11347 ADSCrossRefGoogle Scholar
  154. Korn AJ, Grundahl F, Richard O, Mashonkina L, Barklem PS, Collet R, Gustafsson B, Piskunov N (2007) Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397. ApJ 671:402–419.  https://doi.org/10.1086/523098. arXiv:0709.0639 ADSCrossRefGoogle Scholar
  155. Korotin SA, Andrievsky SM, Zhukova AV (2018) Copper abundance from Cu i and Cu ii lines in metal-poor star spectra: NLTE versus LTE. MNRAS 480:965–971.  https://doi.org/10.1093/mnras/sty1886. arXiv:1807.08972 ADSCrossRefGoogle Scholar
  156. Kraft RP (1994) Abundance differences among globular-cluster giants: Primordial versus evolutionary scenarios. PASP 106:553–565.  https://doi.org/10.1086/133416 ADSCrossRefGoogle Scholar
  157. Kraft RP, Sneden C, Langer GE, Shetrone MD (1993) Oxygen abundaces in Halo giants. IV. The oxygen-sodium anticorrelation in a sample of 22 bright giants in M13. AJ 106:1490–1507.  https://doi.org/10.1086/116742 ADSCrossRefGoogle Scholar
  158. Krumholz MR, Matzner CD (2009) The Dynamics of Radiation-pressure-dominated H ii Regions. ApJ 703:1352–1362.  https://doi.org/10.1088/0004-637X/703/2/1352. arXiv:0906.4343 ADSCrossRefGoogle Scholar
  159. Kuchner MJ, Seager S (2005) Extrasolar Carbon Planets. ArXiv e-prints arXiv:astro-ph/0504214
  160. Kunitomo M, Guillot T, Ida S, Takeuchi T (2018) Revisiting the pre-main-sequence evolution of stars. II. Consequences of planet formation on stellar surface composition. A&A  https://doi.org/10.1051/0004-6361/201833127, arXiv:1808.07396
  161. Kurucz RL (1979) Model atmospheres for G, F, A, B, and O stars. ApJS 40:1–340.  https://doi.org/10.1086/190589 ADSCrossRefGoogle Scholar
  162. Kurucz RL (2005) New atlases for solar flux, irradiance, central intensity, and limb intensity. Memorie della Societa Astronomica Italiana Supplementi 8:189ADSGoogle Scholar
  163. Lambert DL, Brown JA, Hinkle KH, Johnson HR (1984) Carbon, nitrogen, and oxygen abundances in Betelgeuse. ApJ 284:223–237.  https://doi.org/10.1086/162401 ADSCrossRefGoogle Scholar
  164. Lambert DL, Gustafsson B, Eriksson K, Hinkle KH (1986) The chemical composition of carbon stars. I. Carbon, nitrogen, and oxygen in 30 cool carbon stars in the Galactic disk. ApJS 62:373–425.  https://doi.org/10.1086/191145 ADSCrossRefGoogle Scholar
  165. Laws C, Gonzalez G (2001) A Differential Spectroscopic Analysis of 16 Cygni A and B. ApJ 553:405–409.  https://doi.org/10.1086/320669. arXiv:astro-ph/0101304 ADSCrossRefGoogle Scholar
  166. Letarte B, Hill V, Tolstoy E, Jablonka P, Shetrone M, Venn KA, Spite M, Irwin MJ, Battaglia G, Helmi A et al (2010) A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy. A&A 523:A17.  https://doi.org/10.1051/0004-6361/200913413. arXiv:1007.1007 ADSCrossRefGoogle Scholar
  167. Lind K, Charbonnel C, Decressin T, Primas F, Grundahl F, Asplund M (2011) Tracing the evolution of NGC 6397 through the chemical composition of its stellar populations. A&A 527:A148.  https://doi.org/10.1051/0004-6361/201015356. arXiv:1012.0477 ADSCrossRefGoogle Scholar
  168. Lind K, Bergemann M, Asplund M (2012) Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters. MNRAS 427:50–60.  https://doi.org/10.1111/j.1365-2966.2012.21686.x. arXiv:1207.2454 ADSCrossRefGoogle Scholar
  169. Lind K, Amarsi AM, Asplund M, Barklem PS, Bautista M, Bergemann M, Collet R, Kiselman D, Leenaarts J, Pereira TMD (2017) Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D. MNRAS 468:4311–4322.  https://doi.org/10.1093/mnras/stx673. arXiv:1703.04027 ADSCrossRefGoogle Scholar
  170. Lindegren L, Feltzing S (2013) The case for high precision in elemental abundances of stars in the era of large spectroscopic surveys. A&A 553:A94.  https://doi.org/10.1051/0004-6361/201321057. arXiv:1304.3409 ADSCrossRefGoogle Scholar
  171. Lindgren S, Heiter U (2017) Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature. A&A 604:A97.  https://doi.org/10.1051/0004-6361/201730715. arXiv:1705.08785 ADSCrossRefGoogle Scholar
  172. Lindgren S, Heiter U, Seifahrt A (2016) Metallicity determination of M dwarfs. High-resolution infrared spectroscopy. A&A 586:A100.  https://doi.org/10.1051/0004-6361/201526602. arXiv:1510.06642 ADSCrossRefGoogle Scholar
  173. Liu F, Asplund M, Yong D, Meléndez J, Ramírez I, Karakas AI, Carlos M, Marino AF (2016a) The chemical compositions of solar twins in the open cluster M67. MNRAS 463:696–704.  https://doi.org/10.1093/mnras/stw2045. arXiv:1608.03788 ADSCrossRefGoogle Scholar
  174. Liu F, Yong D, Asplund M, Ramírez I, Meléndez J (2016b) The Hyades open cluster is chemically inhomogeneous. MNRAS 457:3934–3948.  https://doi.org/10.1093/mnras/stw247. arXiv:1601.07354 ADSCrossRefGoogle Scholar
  175. Liu F, Yong D, Asplund M, Feltzing S, Mustill AJ, Meléndez J, Ramírez I, Lin J (2018) Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation. A&A 614:A138.  https://doi.org/10.1051/0004-6361/201832701. arXiv:1802.09306 ADSCrossRefGoogle Scholar
  176. Livingston W, Wallace L (1991) An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 micrometer). NSO Technical Report, National Solar Observatory, National Optical Astronomy Observatory, Tucson, AZGoogle Scholar
  177. Lodders K (2003) Solar System Abundances and Condensation Temperatures of the Elements. ApJ 591:1220–1247.  https://doi.org/10.1086/375492 ADSCrossRefGoogle Scholar
  178. Ludwig HG, Behara NT, Steffen M, Bonifacio P (2009a) Impact of granulation effects on the use of Balmer lines as temperature indicators. A&A 502:L1–L4.  https://doi.org/10.1051/0004-6361/200911997. arXiv:0906.4697 ADSCrossRefGoogle Scholar
  179. Ludwig HG, Caffau E, Steffen M, Freytag B, Bonifacio P, Kučinskas A (2009b) The CIFIST 3D model atmosphere grid. Mem. Soc. Astron. Ital. 80:711 arXiv:0908.4496 ADSGoogle Scholar
  180. Magic Z, Collet R, Asplund M, Trampedach R, Hayek W, Chiavassa A, Stein RF, Nordlund Å (2013) The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties. A&A 557:A26.  https://doi.org/10.1051/0004-6361/201321274. arXiv:1302.2621 ADSCrossRefGoogle Scholar
  181. Maiorca E, Magrini L, Busso M, Randich S, Palmerini S, Trippella O (2012) News on the \(s\) Process from Young Open Clusters. ApJ 747:53.  https://doi.org/10.1088/0004-637X/747/1/53. arXiv:1112.5290 ADSCrossRefGoogle Scholar
  182. Majewski SR, Schiavon RP, Frinchaboy PM, Allende Prieto C, Barkhouser R, Bizyaev D, Blank B, Brunner S, Burton A, Carrera R (2017) The Apache Point Observatory Galactic Evolution Experiment (APOGEE). AJ 154:94.  https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420 ADSCrossRefGoogle Scholar
  183. Mashonkina L, Sitnova T, Belyaev AK (2017) Influence of inelastic collisions with hydrogen atoms on the non-LTE modelling of CaI and CaII lines in late-type stars. A&A 605:A53.  https://doi.org/10.1051/0004-6361/201731236. arXiv:1707.04399 ADSCrossRefGoogle Scholar
  184. Mashonkina LI, Belyaev AK, Shi JR (2016) Influence of inelastic collisions with hydrogen atoms on the formation of AlI and SiI lines in stellar spectra. Astron Lett 42:366–378.  https://doi.org/10.1134/S1063773716050078. arXiv:1605.02957 ADSCrossRefGoogle Scholar
  185. Matteucci F, Brocato E (1990) Metallicity distribution and abundance ratios in the stars of the Galactic bulge. ApJ 365:539–543.  https://doi.org/10.1086/169508 ADSCrossRefGoogle Scholar
  186. Matteucci F, Greggio L (1986) Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. A&A 154:279–287ADSGoogle Scholar
  187. Matteucci F, Spitoni E, Recchi S, Valiante R (2009) The effect of different type Ia supernova progenitors on Galactic chemical evolution. A&A 501:531–538.  https://doi.org/10.1051/0004-6361/200911869. arXiv:0905.0272 ADSCrossRefGoogle Scholar
  188. McWilliam A (2016) The Chemical Composition of the Galactic Bulge and Implications for its Evolution. PASA 33:e040.  https://doi.org/10.1017/pasa.2016.32. arXiv:1607.05299 ADSCrossRefGoogle Scholar
  189. McWilliam A, Rich RM (1994) The first detailed abundance analysis of Galactic bulge K giants in Baade’s window. ApJS 91:749–791.  https://doi.org/10.1086/191954 ADSCrossRefGoogle Scholar
  190. McWilliam A, Preston GW, Sneden C, Searle L (1995) Spectroscopic Analysis of 33 of the Most Metal Poor Stars. II. AJ 109:2757.  https://doi.org/10.1086/117486 ADSCrossRefGoogle Scholar
  191. McWilliam A, Wallerstein G, Mottini M (2013) Chemistry of the Sagittarius Dwarf Galaxy: A Top-light Initial Mass Function, Outflows, and the R-process. ApJ 778:149.  https://doi.org/10.1088/0004-637X/778/2/149. arXiv:1309.2974 ADSCrossRefGoogle Scholar
  192. Meléndez J, Ramírez I (2016) Planet signatures in the chemical composition of Sun-like stars. In: Feiden GA (ed) The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Zenodo,  https://doi.org/10.5281/zenodo.168421, arXiv:1611.04064
  193. Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The Peculiar Solar Composition and Its Possible Relation to Planet Formation. ApJL 704:L66–L70.  https://doi.org/10.1088/0004-637X/704/1/L66. arXiv:0909.2299 ADSCrossRefGoogle Scholar
  194. Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Grundahl F, Monelli M, Yong D (2013) A WFC3/HST View of the Three Stellar Populations in the Globular Cluster NGC 6752. ApJ 767:120.  https://doi.org/10.1088/0004-637X/767/2/120. arXiv:1301.7044 ADSCrossRefGoogle Scholar
  195. Minchev I, Chiappini C, Martig M (2014) Chemodynamical evolution of the Milky Way disk. II. Variations with Galactic radius and height above the disk plane. A&A 572:A92.  https://doi.org/10.1051/0004-6361/201423487. arXiv:1401.5796 ADSCrossRefGoogle Scholar
  196. Mitschang AW, De Silva G, Zucker DB, Anguiano B, Bensby T, Feltzing S (2014) Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc. MNRAS 438:2753–2764.  https://doi.org/10.1093/mnras/stt2320. arXiv:1312.1759 ADSCrossRefGoogle Scholar
  197. Moore CS, Uitenbroek H, Rempel M, Criscuoli S, Rast MP (2015) The Effects of Magnetic Field Morphology on the Determination of Oxygen and Iron Abundances in the Solar Photosphere. ApJ 799:150.  https://doi.org/10.1088/0004-637X/799/2/150 ADSCrossRefGoogle Scholar
  198. Morel T (2018) The chemical composition of \(\alpha \) Centauri AB revisited. A&A 615:A172.  https://doi.org/10.1051/0004-6361/201833125. arXiv:1805.00929 ADSCrossRefGoogle Scholar
  199. Nandakumar G, Ryde N, Schultheis M, Thorsbro B, Jönsson H, Barklem PS, Rich RM, Fragkoudi F (2018) Chemical Characterization of the Inner Galactic bulge: North-South Symmetry. MNRAS 478:4374–4389.  https://doi.org/10.1093/mnras/sty1255, arXiv:1805.05037
  200. Ness M, Hogg DW, Rix HW, Ho AYQ, Zasowski G (2015) The Cannon: A data-driven approach to Stellar Label Determination. ApJ 808:16.  https://doi.org/10.1088/0004-637X/808/1/16. arXiv:1501.07604 ADSCrossRefGoogle Scholar
  201. Ness M, Rix HW, Hogg DW, Casey AR, Holtzman J, Fouesneau M, Zasowski G, Geisler D, Shetrone M, Minniti D (2018) Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin. ApJ 853:198.  https://doi.org/10.3847/1538-4357/aa9d8e. arXiv:1701.07829 ADSCrossRefGoogle Scholar
  202. Nieva MF, Przybilla N (2012) Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models. A&A 539:A143.  https://doi.org/10.1051/0004-6361/201118158. arXiv:1203.5787 ADSCrossRefGoogle Scholar
  203. Nissen PE (2013) The carbon-to-oxygen ratio in stars with planets. A&A 552:A73.  https://doi.org/10.1051/0004-6361/201321234. arXiv:1303.1726 ADSCrossRefGoogle Scholar
  204. Nissen PE (2015) High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. A&A 579:A52.  https://doi.org/10.1051/0004-6361/201526269. arXiv:1504.07598 ADSCrossRefGoogle Scholar
  205. Nissen PE (2016) High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age. A&A 593:A65.  https://doi.org/10.1051/0004-6361/201628888. arXiv:1606.08399 ADSCrossRefGoogle Scholar
  206. Nissen PE, Schuster WJ (1997) Chemical composition of halo and disk stars with overlapping metallicities. A&A 326:751–762ADSGoogle Scholar
  207. Nissen PE, Schuster WJ (2010) Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. A&A 511:L10.  https://doi.org/10.1051/0004-6361/200913877. arXiv:1002.4514 ADSCrossRefGoogle Scholar
  208. Nissen PE, Schuster WJ (2011) Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba. A&A 530:A15.  https://doi.org/10.1051/0004-6361/201116619. arXiv:1103.4755 ADSCrossRefGoogle Scholar
  209. Nissen PE, Chen YQ, Carigi L, Schuster WJ, Zhao G (2014) Carbon and oxygen abundances in stellar populations. A&A 568:A25.  https://doi.org/10.1051/0004-6361/201424184. arXiv:1406.5218 ADSCrossRefGoogle Scholar
  210. Nissen PE, Silva Aguirre V, Christensen-Dalsgaard J, Collet R, Grundahl F, Slumstrup D (2017) High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age. A&A 608:A112.  https://doi.org/10.1051/0004-6361/201731845. arXiv:1710.03544 ADSCrossRefGoogle Scholar
  211. Nomoto K, Kobayashi C, Tominaga N (2013) Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies. ARA&A 51:457–509.  https://doi.org/10.1146/annurev-astro-082812-140956 ADSCrossRefGoogle Scholar
  212. Nordlander T, Lind K (2017) Non-LTE aluminium abundances in late-type stars. A&A 607:A75.  https://doi.org/10.1051/0004-6361/201730427. arXiv:1708.01949 ADSCrossRefGoogle Scholar
  213. Nordlander T, Korn AJ, Richard O, Lind K (2012) Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints. ApJ 753:48.  https://doi.org/10.1088/0004-637X/753/1/48. arXiv:1204.5600 ADSCrossRefGoogle Scholar
  214. Nordlund A, Dravins D (1990) Stellar granulation. III. Hydrodynamic model atmospheres. IV. Line formation in inhomogeneous stellar photospheres. V. Synthetic spectral lines in disk-integrated starlight. A&A 228:155–217ADSGoogle Scholar
  215. Nordlund Å, Stein RF (1990) 3-D simulations of solar and stellar convection and magnetoconvection. Computer Physics Communications 59:119–125.  https://doi.org/10.1016/0010-4655(90)90161-S ADSCrossRefzbMATHGoogle Scholar
  216. Nordström B, Mayor M, Andersen J, Holmberg J, Pont F, Jørgensen BR, Olsen EH, Udry S, Mowlavi N (2004) The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of \(\sim \) 14 000 F and G dwarfs. A&A 418:989–1019.  https://doi.org/10.1051/0004-6361:20035959. arXiv:astro-ph/0405198 ADSCrossRefGoogle Scholar
  217. Oh S, Price-Whelan AM, Brewer JM, Hogg DW, Spergel DN, Myles J (2018) Kronos and Krios: Evidence for Accretion of a Massive, Rocky Planetary System in a Comoving Pair of Solar-type Stars. ApJ 854:138.  https://doi.org/10.3847/1538-4357/aaab4d. arXiv:1709.05344 ADSCrossRefGoogle Scholar
  218. Olsen EH (1988) The intrinsic colour calibration of Stromgren photometry for F-type stars. A&A 189:173–178ADSGoogle Scholar
  219. O’Malley EM, McWilliam A, Chaboyer B, Thompson I (2017) A Differential Abundance Analysis of Very Metal-poor Stars. ApJ 838:90.  https://doi.org/10.3847/1538-4357/aa62a2. arXiv:1703.00019 ADSCrossRefGoogle Scholar
  220. Önehag A, Korn A, Gustafsson B, Stempels E, Vandenberg DA (2011) M67–1194, an unusually Sun-like solar twin in M67. A&A 528:A85.  https://doi.org/10.1051/0004-6361/201015138. arXiv:1009.4579 ADSCrossRefGoogle Scholar
  221. Önehag A, Heiter U, Gustafsson B, Piskunov N, Plez B, Reiners A (2012) M-dwarf metallicities. A high-resolution spectroscopic study in the near infrared. A&A 542:A33.  https://doi.org/10.1051/0004-6361/201118101. arXiv:1112.0141 ADSCrossRefGoogle Scholar
  222. Önehag A, Gustafsson B, Korn A (2014) Abundances and possible diffusion of elements in M 67 stars. A&A 562:A102.  https://doi.org/10.1051/0004-6361/201322663. arXiv:1310.6297 ADSCrossRefGoogle Scholar
  223. Payne CH (1928) On the Contours of Stellar Absorption Lines, and the Composition of Stellar Atmospheres. Proc Natl Acad Sci USA 14:399–406.  https://doi.org/10.1073/pnas.14.5.399 ADSCrossRefzbMATHGoogle Scholar
  224. Payne-Gaposchkin C, Whipple FL (1940) Synthetic Spectra for Supernovae. Proc Natl Acad Sci USA 26:264–272.  https://doi.org/10.1073/pnas.26.4.264 ADSCrossRefGoogle Scholar
  225. Pereira TMD, Asplund M, Kiselman D (2009) Oxygen lines in solar granulation. II. Centre-to-limb variation, NLTE line formation, blends, and the solar oxygen abundance. A&A 508:1403–1416.  https://doi.org/10.1051/0004-6361/200912840. arXiv:0909.2310 ADSCrossRefGoogle Scholar
  226. Pereira TMD, Asplund M, Collet R, Thaler I, Trampedach R, Leenaarts J (2013) How realistic are solar model atmospheres? A&A 554:A118.  https://doi.org/10.1051/0004-6361/201321227. arXiv:1304.4932 ADSCrossRefGoogle Scholar
  227. Perets HB, Gal-Yam A, Mazzali PA, Arnett D, Kagan D, Filippenko AV, Li W, Arcavi I, Cenko SB, Fox DB et al (2010) A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465:322–325.  https://doi.org/10.1038/nature09056. arXiv:0906.2003 ADSCrossRefGoogle Scholar
  228. Peterson RC (1980) Evidence from sodium-abundance variations among red giants of M13 for inhomogeneities in the protocluster gas. ApJL 237:L87–L91.  https://doi.org/10.1086/157950 ADSCrossRefGoogle Scholar
  229. Petigura EA, Marcy GW (2011) Carbon and Oxygen in Nearby Stars: Keys to Protoplanetary Disk Chemistry. ApJ 735:41.  https://doi.org/10.1088/0004-637X/735/1/41. arXiv:1106.5449 ADSCrossRefGoogle Scholar
  230. Pignatari M, Gallino R, Heil M, Wiescher M, Käppeler F, Herwig F, Bisterzo S (2010) The Weak \(s\)-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. ApJ 710:1557–1577.  https://doi.org/10.1088/0004-637X/710/2/1557 ADSCrossRefGoogle Scholar
  231. Pinsonneault MH, Elsworth Y, Epstein C, Hekker S, Mészáros S, Chaplin WJ, Johnson JA, García RA, Holtzman J, Mathur S et al (2014) The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields. ApJS 215:19.  https://doi.org/10.1088/0067-0049/215/2/19. arXiv:1410.2503 ADSCrossRefGoogle Scholar
  232. Piskunov N, Valenti JA (2017) Spectroscopy Made Easy: Evolution. A&A 597:A16.  https://doi.org/10.1051/0004-6361/201629124. arXiv:1606.06073 ADSCrossRefGoogle Scholar
  233. Prantzos N, de Laverny P, Guiglion G, Recio-Blanco A, Worley CC (2017) The AMBRE project: a study of Li evolution in the Galactic thin and thick discs. A&A 606:A132.  https://doi.org/10.1051/0004-6361/201731188. arXiv:1709.03998 ADSCrossRefGoogle Scholar
  234. Ramírez I, Meléndez J, Cornejo D, Roederer IU, Fish JR (2011) Elemental Abundance Differences in the 16 Cygni Binary System: A Signature of Gas Giant Planet Formation? ApJ 740:76.  https://doi.org/10.1088/0004-637X/740/2/76. arXiv:1107.5814 ADSCrossRefGoogle Scholar
  235. Ramírez I, Meléndez J, Chanamé J (2012) Oxygen Abundances in Low- and High-\(\alpha \) Field Halo Stars and the Discovery of Two Field Stars Born in Globular Clusters. ApJ 757:164.  https://doi.org/10.1088/0004-637X/757/2/164. arXiv:1208.3675 ADSCrossRefGoogle Scholar
  236. Ramírez I, Allende Prieto C, Lambert DL (2013) Oxygen Abundances in Nearby FGK Stars and the Galactic Chemical Evolution of the Local Disk and Halo. ApJ 764:78.  https://doi.org/10.1088/0004-637X/764/1/78. arXiv:1301.1582 ADSCrossRefGoogle Scholar
  237. Ramírez I, Meléndez J, Bean J, Asplund M, Bedell M, Monroe T, Casagrande L, Schirbel L, Dreizler S, Teske J, Tucci Maia M, Alves-Brito A, Baumann P (2014) The Solar Twin Planet Search. I. Fundamental parameters of the stellar sample. A&A 572:A48.  https://doi.org/10.1051/0004-6361/201424244. arXiv:1408.4130 ADSCrossRefGoogle Scholar
  238. Ramírez I, Khanal S, Aleo P, Sobotka A, Liu F, Casagrande L, Meléndez J, Yong D, Lambert DL, Asplund M (2015) The Dissimilar Chemical Composition of the Planet-hosting Stars of the XO-2 Binary System. ApJ 808:13.  https://doi.org/10.1088/0004-637X/808/1/13. arXiv:1506.01025 ADSCrossRefGoogle Scholar
  239. Recio-Blanco A, Rojas-Arriagada A, de Laverny P, Mikolaitis S, Hill V, Zoccali M, Fernández-Trincado JG, Robin AC, Babusiaux C, Gilmore G, Randich S (2017) The Gaia-ESO Survey: Low-\(\alpha \) element stars in the Galactic bulge. A&A 602:L14.  https://doi.org/10.1051/0004-6361/201630220. arXiv:1702.04500 ADSCrossRefGoogle Scholar
  240. Reddy ABS, Lambert DL (2015) Local associations and the barium puzzle. MNRAS 454:1976–1991.  https://doi.org/10.1093/mnras/stv1876. arXiv:1508.02815 ADSCrossRefGoogle Scholar
  241. Reddy ABS, Lambert DL (2017) Solar Twins and the Barium Puzzle. ApJ 845:151.  https://doi.org/10.3847/1538-4357/aa81d6. arXiv:1707.07051 ADSCrossRefGoogle Scholar
  242. Reddy BE, Lambert DL, Allende Prieto C (2006) Elemental abundance survey of the Galactic thick disc. MNRAS 367:1329–1366.  https://doi.org/10.1111/j.1365-2966.2006.10148.x. arXiv:astro-ph/0512505 ADSCrossRefGoogle Scholar
  243. Reggiani H, Meléndez J, Yong D, Ramírez I, Asplund M (2016) First high-precision differential abundance analysis of extremely metal-poor stars. A&A 586:A67.  https://doi.org/10.1051/0004-6361/201527439. arXiv:1512.03349 ADSCrossRefGoogle Scholar
  244. Reggiani H, Meléndez J, Kobayashi C, Karakas A, Placco V (2017) Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars. A&A 608:A46.  https://doi.org/10.1051/0004-6361/201730750. arXiv:1709.03750 ADSCrossRefGoogle Scholar
  245. Rojas-Arriagada A, Recio-Blanco A, de Laverny P, Mikolaitis Š, Matteucci F, Spitoni E, Schultheis M, Hayden M, Hill V, Zoccali M (2017) The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations. A&A 601:A140.  https://doi.org/10.1051/0004-6361/201629160. arXiv:1704.03325 ADSCrossRefGoogle Scholar
  246. Romano D, Matteucci F (2007) Contrasting copper evolution in \(\omega \) Centauri and the Milky Way. MNRAS 378:L59–L63.  https://doi.org/10.1111/j.1745-3933.2007.00320.x. arXiv:astro-ph/0703760 ADSCrossRefGoogle Scholar
  247. Russell HN (1929) On the Composition of the Sun’s Atmosphere. ApJ 70:11.  https://doi.org/10.1086/143197 ADSCrossRefGoogle Scholar
  248. Ryde N, Schultheis M, Grieco V, Matteucci F, Rich RM, Uttenthaler S (2016) Chemical Evolution of the Inner 2 Degrees of the Milky Way Bulge: [\(\alpha \)/Fe] Trends and Metallicity Gradients. AJ 151:1.  https://doi.org/10.3847/0004-6256/151/1/1. arXiv:1510.02622 ADSCrossRefGoogle Scholar
  249. Saffe C, Jofré E, Martioli E, Flores M, Petrucci R, Jaque Arancibia M (2017) Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies. A&A 604:L4.  https://doi.org/10.1051/0004-6361/201731430. arXiv:1707.02180 ADSCrossRefGoogle Scholar
  250. Santos NC, Israelian G, Mayor M (2001) The metal-rich nature of stars with planets. A&A 373:1019–1031.  https://doi.org/10.1051/0004-6361:20010648. arXiv:astro-ph/0105216 ADSCrossRefGoogle Scholar
  251. Schultheis M, Rojas-Arriagada A, García Pérez AE, Jönsson H, Hayden M, Nandakumar G, Cunha K, Allende Prieto C, Holtzman JA, Beers TC (2017) Baade’s window and APOGEE. Metallicities, ages, and chemical abundances. A&A 600:A14.  https://doi.org/10.1051/0004-6361/201630154. arXiv:1702.01547 ADSCrossRefGoogle Scholar
  252. Schuster WJ, Moitinho A, Márquez A, Parrao L, Covarrubias E (2006) \(uvby\)-\(\beta \) photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars. A&A 445:939–958.  https://doi.org/10.1051/0004-6361:20053796. arXiv:astro-ph/0510313 ADSCrossRefGoogle Scholar
  253. Scott P, Grevesse N, Asplund M, Sauval AJ, Lind K, Takeda Y, Collet R, Trampedach R, Hayek W (2015) The elemental composition of the Sun. I. The intermediate mass elements Na to Ca. A&A 573:A25.  https://doi.org/10.1051/0004-6361/201424109. arXiv:1405.0279 ADSCrossRefGoogle Scholar
  254. Searle L, Zinn R (1978) Compositions of halo clusters and the formation of the galactic halo. ApJ 225:357–379.  https://doi.org/10.1086/156499 ADSCrossRefGoogle Scholar
  255. Shchukina N, Trujillo Bueno J (2015) The impact of surface dynamo magnetic fields on the solar iron abundance. A&A 579:A112.  https://doi.org/10.1051/0004-6361/201425569 ADSCrossRefGoogle Scholar
  256. Shchukina N, Sukhorukov A, Trujillo Bueno J (2016) Impact of surface dynamo magnetic fields on the solar abundance of the CNO elements. A&A 586:A145.  https://doi.org/10.1051/0004-6361/201526452 ADSCrossRefGoogle Scholar
  257. Shetrone M, Venn KA, Tolstoy E, Primas F, Hill V, Kaufer A (2003) VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios. AJ 125:684–706.  https://doi.org/10.1086/345966. arXiv:astro-ph/0211167 ADSCrossRefGoogle Scholar
  258. Shetrone M, Bizyaev D, Lawler JE, Allende Prieto C, Johnson JA, Smith VV, Cunha K, Holtzman J, García Pérez AE, Mészáros S (2015) The SDSS-III APOGEE Spectral Line List for H-band Spectroscopy. ApJS 221:24.  https://doi.org/10.1088/0067-0049/221/2/24. arXiv:1502.04080 ADSCrossRefGoogle Scholar
  259. Shetrone MD, Côté P, Sargent WLW (2001) Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies. ApJ 548:592–608.  https://doi.org/10.1086/319022. arXiv:astro-ph/0009505 ADSCrossRefGoogle Scholar
  260. Shi JR, Yan HL, Zhou ZM, Zhao G (2018) NLTE Analysis of Copper Lines in Different Stellar Populations. ApJ 862:71.  https://doi.org/10.3847/1538-4357/aacb22. arXiv:1806.02225 ADSCrossRefGoogle Scholar
  261. Silva Aguirre V, Davies GR, Basu S, Christensen-Dalsgaard J, Creevey O, Metcalfe TS, Bedding TR, Casagrande L, Handberg R, Lund MN, Nissen PE (2015) Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology. MNRAS 452:2127–2148.  https://doi.org/10.1093/mnras/stv1388. arXiv:1504.07992 ADSCrossRefGoogle Scholar
  262. Silva Aguirre V, Lund MN, Antia HM, Ball WH, Basu S, Christensen-Dalsgaard J, Lebreton Y, Reese DR, Verma K, Casagrande L (2017) Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II.Radii, Masses, and Ages. ApJ 835:173.  https://doi.org/10.3847/1538-4357/835/2/173. arXiv:1611.08776 ADSCrossRefGoogle Scholar
  263. Skúladóttir Á, Tolstoy E, Salvadori S, Hill V, Pettini M (2017) Zinc abundances in the Sculptor dwarf spheroidal galaxy. A&A 606:A71.  https://doi.org/10.1051/0004-6361/201731158. arXiv:1708.00511 ADSCrossRefGoogle Scholar
  264. Smiljanic R, Pasquini L, Charbonnel C, Lagarde N (2010) Beryllium abundances along the evolutionary sequence of the open cluster IC 4651. In: Charbonnel C, Tosi M, Primas F, Chiappini C (eds) Light Elements in the Universe, IAU Symposium, vol 268, pp 357–358,  https://doi.org/10.1017/S174392131000445X, arXiv:1001.1832
  265. Smith VV, Lambert DL (1985) The chemical composition of red giants. I. Dredge-up in the M and MS stars. ApJ 294:326–338.  https://doi.org/10.1086/163300 ADSCrossRefGoogle Scholar
  266. Snaith ON, Haywood M, Di Matteo P, Lehnert MD, Combes F, Katz D, Gómez A (2014) The Dominant Epoch of Star Formation in the Milky Way Formed the Thick Disk. ApJL 781:L31.  https://doi.org/10.1088/2041-8205/781/2/L31. arXiv:1401.1835 ADSCrossRefGoogle Scholar
  267. Sneden C, Cowan JJ, Kobayashi C, Pignatari M, Lawler JE, Den Hartog EA, Wood MP (2016) Iron-group Abundances in the Metal-poor Main-Sequence Turnoff Star HD 84937. ApJ 817:53.  https://doi.org/10.3847/0004-637X/817/1/53. arXiv:1511.05985 ADSCrossRefGoogle Scholar
  268. Sousa SG, Santos NC, Adibekyan V, Delgado-Mena E, Israelian G (2015) ARES v2: new features and improved performance. A&A 577:A67.  https://doi.org/10.1051/0004-6361/201425463. arXiv:1504.02725 ADSCrossRefGoogle Scholar
  269. Spina L, Meléndez J, Karakas AI, Ramírez I, Monroe TR, Asplund M, Yong D (2016a) Nucleosynthetic history of elements in the Galactic disk. [X/Fe]-age relations from high-precision spectroscopy. A&A 593:A125.  https://doi.org/10.1051/0004-6361/201628557. arXiv:1606.04842 ADSCrossRefGoogle Scholar
  270. Spina L, Meléndez J, Ramírez I (2016b) Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars. A&A 585:A152.  https://doi.org/10.1051/0004-6361/201527429. arXiv:1511.01012 ADSCrossRefGoogle Scholar
  271. Spina L, Meléndez J, Casey AR, Karakas AI, Tucci-Maia M (2018a) Chemical Inhomogeneities in the Pleiades: Signatures of Rocky-forming Material in Stellar Atmospheres. ApJ 863:179.  https://doi.org/10.3847/1538-4357/aad190. arXiv:1807.00941 ADSCrossRefGoogle Scholar
  272. Spina L, Meléndez J, Karakas AI, dos Santos L, Bedell M, Asplund M, Ramírez I, Yong D, Alves-Brito A, Bean JL, Dreizler S (2018b) The temporal evolution of neutron-capture elements in the Galactic discs. MNRAS 474:2580–2593.  https://doi.org/10.1093/mnras/stx2938. arXiv:1711.03643 ADSCrossRefGoogle Scholar
  273. Spinrad H, Vardya MS (1966) Approximate Abundances of the Light Elements from the Molecular Spectra of M and S Stars. ApJ 146:399.  https://doi.org/10.1086/148904 ADSCrossRefGoogle Scholar
  274. Steffen M, Prakapavičius D, Caffau E, Ludwig HG, Bonifacio P, Cayrel R, Kučinskas A, Livingston WC (2015) The photospheric solar oxygen project. IV. 3D-NLTE investigation of the 777 nm triplet lines. A&A 583:A57.  https://doi.org/10.1051/0004-6361/201526406. arXiv:1508.03487 ADSCrossRefGoogle Scholar
  275. Stein RF, Nordlund Å (1998) Simulations of Solar Granulation. I. General Properties. ApJ 499:914–933.  https://doi.org/10.1086/305678 ADSCrossRefGoogle Scholar
  276. Stephens A, Boesgaard AM (2002) Abundances from High-Resolution Spectra of Kinematically Interesting Halo Stars. AJ 123:1647–1700.  https://doi.org/10.1086/338898 ADSCrossRefGoogle Scholar
  277. Stetson PB, Pancino E (2008) DAOSPEC: An Automatic Code for Measuring Equivalent Widths in High-Resolution Stellar Spectra. PASP 120:1332.  https://doi.org/10.1086/596126. arXiv:0811.2932 ADSCrossRefGoogle Scholar
  278. Strömgren B (1940) On the Chemical Composition of the Solar Atmosphere. In: Festschrift für Elis Strömgren, Munksgaard, E., Copenhagen, p 218Google Scholar
  279. Strömgren B, Gustafsson B, Olsen EH (1982) Evidence of helium abundance differences between the Hyades stars and field stars, and between Hyades stars and Coma cluster stars. PASP 94:5–15.  https://doi.org/10.1086/130932 ADSCrossRefGoogle Scholar
  280. Suárez-Andrés L, Israelian G, González Hernández JI, Adibekyan VZ, Delgado Mena E, Santos NC, Sousa SG (2018) C/O vs. Mg/Si ratios in solar type stars: The HARPS sample. A&A 614:A84.  https://doi.org/10.1051/0004-6361/201730743. arXiv:1801.09474 ADSCrossRefGoogle Scholar
  281. Takeda Y, Tajitsu A (2015) Spectroscopic study of red giants in the Kepler field with asteroseismologically established evolutionary status and stellar parameters. MNRAS 450:397–413.  https://doi.org/10.1093/mnras/stv682. arXiv:1503.07595 ADSCrossRefGoogle Scholar
  282. Takeda Y, Hashimoto O, Taguchi H, Yoshioka K, Takada-Hidai M, Saito Y, Honda S (2005) Non-LTE Line-Formation and Abundances of Sulfur and Zinc in F, G, and K Stars. PASJ 57:751–768.  https://doi.org/10.1093/pasj/57.5.751. arXiv:astro-ph/0509239 ADSCrossRefGoogle Scholar
  283. Teske JK, Ghezzi L, Cunha K, Smith VV, Schuler SC, Bergemann M (2015) Abundance Differences between Exoplanet Binary Host Stars XO-2N and XO-2S - Dependence on Stellar Parameters. ApJL 801:L10.  https://doi.org/10.1088/2041-8205/801/1/L10. arXiv:1501.02167 ADSCrossRefGoogle Scholar
  284. Teske JK, Khanal S, Ramírez I (2016) The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP-94A and B. ApJ 819:19.  https://doi.org/10.3847/0004-637X/819/1/19. arXiv:1601.01731 ADSCrossRefGoogle Scholar
  285. Thiabaud A, Marboeuf U, Alibert Y, Leya I, Mezger K (2015) Elemental ratios in stars vs planets. A&A 580:A30.  https://doi.org/10.1051/0004-6361/201525963. arXiv:1507.01343 ADSCrossRefGoogle Scholar
  286. Thomson W (1889) Constitution of Matter. In: Popular Lectures and Addresses, Macmillan, London and New York, vol 1, p 73Google Scholar
  287. Thorsbro B, Ryde N, Schultheis M, Hartman H, Rich RM, Lomaeva M, Origlia L, Jönsson H (2018) Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster. ApJ 866:52.  https://doi.org/10.3847/1538-4357/aadb97. arXiv:1808.07489 ADSCrossRefGoogle Scholar
  288. Ting YS, Conroy C, Goodman A (2015) Prospects for Chemically Tagging Stars in the Galaxy. ApJ 807:104.  https://doi.org/10.1088/0004-637X/807/1/104. arXiv:1504.03327 ADSCrossRefGoogle Scholar
  289. Ting YS, Conroy C, Rix HW, Cargile P (2017) Prospects for Measuring Abundances of \(>\)20 Elements with Low-resolution Stellar Spectra. ApJ 843:32.  https://doi.org/10.3847/1538-4357/aa7688. arXiv:1706.00111 ADSCrossRefGoogle Scholar
  290. Tinsley BM (1979) Stellar lifetimes and abundance ratios in chemical evolution. ApJ 229:1046–1056.  https://doi.org/10.1086/157039 ADSCrossRefGoogle Scholar
  291. Tolstoy E, Hill V, Tosi M (2009) Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group. ARA&A 47:371–425.  https://doi.org/10.1146/annurev-astro-082708-101650. arXiv:0904.4505 ADSCrossRefGoogle Scholar
  292. Trampedach R, Asplund M, Collet R, Nordlund Å, Stein RF (2013) A Grid of Three-dimensional Stellar Atmosphere Models of Solar Metallicity. I. General Properties, Granulation, and Atmospheric Expansion. ApJ 769:18.  https://doi.org/10.1088/0004-637X/769/1/18. arXiv:1303.1780 ADSCrossRefGoogle Scholar
  293. Tsuji T (1985) C, N, O, and their isotope abundances in coolest stars of the red giant branch. In: Jaschek M, Keenan PC (eds) Cool Stars with Excesses of Heavy Elements, D. Reidel, Dordrecht, Astrophysics and Space Science Library, vol 114, pp 295–298,  https://doi.org/10.1007/978-94-009-5325-3_38
  294. Tucci Maia M, Meléndez J, Ramírez I (2014) High Precision Abundances in the 16 Cyg Binary System: A Signature of the Rocky Core in the Giant Planet. ApJL 790:L25.  https://doi.org/10.1088/2041-8205/790/2/L25. arXiv:1407.4132 ADSCrossRefGoogle Scholar
  295. Turcotte S, Richer J, Michaud G, Iglesias CA, Rogers FJ (1998) Consistent Solar Evolution Model Including Diffusion and Radiative Acceleration Effects. ApJ 504:539–558.  https://doi.org/10.1086/306055 ADSCrossRefGoogle Scholar
  296. Unsöld A (1938) Physik der Sternamosphären, mit besonderer Berücksichtigung der Sonne. Julius Springer, Berlin,  https://doi.org/10.1007/978-3-642-50754-0
  297. Unterborn CT, Kabbes JE, Pigott JS, Reaman DM, Panero WR (2014) The Role of Carbon in Extrasolar Planetary Geodynamics and Habitability. ApJ 793:124.  https://doi.org/10.1088/0004-637X/793/2/124. arXiv:1311.0024 ADSCrossRefGoogle Scholar
  298. Valenti JA, Piskunov N (1996) Spectroscopy made easy: A new tool for fitting observations with synthetic spectra. A&AS 118:595–603ADSCrossRefGoogle Scholar
  299. Van der Swaelmen M, Hill V, Primas F, Cole AA (2013) Chemical abundances in LMC stellar populations. II. The bar sample. A&A 560:A44.  https://doi.org/10.1051/0004-6361/201321109. arXiv:1306.4224 ADSCrossRefGoogle Scholar
  300. van Leeuwen F (2007) Validation of the new Hipparcos reduction. A&A 474:653–664.  https://doi.org/10.1051/0004-6361:20078357. arXiv:0708.1752 ADSCrossRefGoogle Scholar
  301. Veyette MJ, Muirhead PS, Mann AW, Brewer JM, Allard F, Homeier D (2017) A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs. ApJ 851:26.  https://doi.org/10.3847/1538-4357/aa96aa. arXiv:1710.10259 ADSCrossRefGoogle Scholar
  302. Vieira T (1986) The chemical composition of Alpha Orionis. Uppsala Astron Obs Rep 32Google Scholar
  303. Vinyoles N, Serenelli AM, Villante FL, Basu S, Bergström J, Gonzalez-Garcia MC, Maltoni M, Peña-Garay C, Song N (2017) A New Generation of Standard Solar Models. ApJ 835:202.  https://doi.org/10.3847/1538-4357/835/2/202. arXiv:1611.09867 ADSCrossRefGoogle Scholar
  304. Vitense E (1953) Die Wasserstoffkonvektionszone der Sonne. Z. Astrophys. 32:135ADSGoogle Scholar
  305. Wallace L, Hinkle KH, Livingston WC, Davis SP (2011) An Optical and Near-infrared (2958–9250 Å) Solar Flux Atlas. ApJS 195:6.  https://doi.org/10.1088/0067-0049/195/1/6 ADSCrossRefGoogle Scholar
  306. Wallerstein G (1962) Abundances in G Dwarfs. VI. A Survey of Field Stars. ApJS 6:407.  https://doi.org/10.1086/190067 ADSCrossRefGoogle Scholar
  307. Wedemeyer S, Freytag B, Steffen M, Ludwig HG, Holweger H (2004) Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. A&A 414:1121–1137.  https://doi.org/10.1051/0004-6361:20031682. arXiv:astro-ph/0311273 ADSCrossRefGoogle Scholar
  308. Westin J, Sneden C, Gustafsson B, Cowan JJ (2000) The r-Process-enriched Low-Metallicity Giant HD 115444. ApJ 530:783–799.  https://doi.org/10.1086/308407. arXiv:astro-ph/9910376 ADSCrossRefGoogle Scholar
  309. Worrall G (1972) Can Astrophysical Abundances be Taken Seriously? Nature 236:15–18.  https://doi.org/10.1038/236015a0 ADSCrossRefGoogle Scholar
  310. Wyatt MC (2008) Evolution of Debris Disks. ARA&A 46:339–383.  https://doi.org/10.1146/annurev.astro.45.051806.110525 ADSCrossRefGoogle Scholar
  311. Yan HL, Shi JR, Nissen PE, Zhao G (2016) Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood. A&A 585:A102.  https://doi.org/10.1051/0004-6361/201527491. arXiv:1511.04168 ADSCrossRefGoogle Scholar
  312. Yong D, Carney BW, Friel ED (2012) Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. AJ 144:95.  https://doi.org/10.1088/0004-6256/144/4/95. arXiv:1206.6931 ADSCrossRefGoogle Scholar
  313. Yong D, Meléndez J, Grundahl F, Roederer IU, Norris JE, Milone AP, Marino AF, Coelho P, McArthur BE, Lind K, Collet R, Asplund M (2013) High precision differential abundance measurements in globular clusters: chemical inhomogeneities in NGC 6752. MNRAS 434:3542–3565.  https://doi.org/10.1093/mnras/stt1276. arXiv:1307.4486 ADSCrossRefGoogle Scholar
  314. Zhao G, Zhao YH, Chu YQ, Jing YP, Deng LC (2012) LAMOST spectral survey - An overview. Research in Astronomy and Astrophysics 12:723–734.  https://doi.org/10.1088/1674-4527/12/7/002 ADSCrossRefGoogle Scholar
  315. Zolotov A, Willman B, Brooks AM, Governato F, Brook CB, Hogg DW, Quinn T, Stinson G (2009) The Dual Origin of Stellar Halos. ApJ 702:1058–1067.  https://doi.org/10.1088/0004-637X/702/2/1058. arXiv:0904.3333 ADSCrossRefGoogle Scholar
  316. Zolotov A, Willman B, Brooks AM, Governato F, Hogg DW, Shen S, Wadsley J (2010) The Dual Origin of Stellar Halos. II. Chemical Abundances as Tracers of Formation History. ApJ 721:738–743.  https://doi.org/10.1088/0004-637X/721/1/738. arXiv:1004.3789 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Stellar Astrophysics CentreAarhus UniversityAarhus CDenmark
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Nordic Institute for Theoretical Physics (Nordita)StockholmSweden

Personalised recommendations