Advertisement

Origin and evolution of the atmospheres of early Venus, Earth and Mars

  • Helmut Lammer
  • Aubrey L. Zerkle
  • Stefanie Gebauer
  • Nicola Tosi
  • Lena Noack
  • Manuel Scherf
  • Elke Pilat-Lohinger
  • Manuel Güdel
  • John Lee Grenfell
  • Mareike Godolt
  • Athanasia Nikolaou
Review Article

Abstract

We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.

Keywords

Primordial atmospheres Secondary atmospheres Atmospheric evolution Early Earth, Venus, Mars Habitability 

Notes

Acknowledgements

H. Lammer, M. Güdel, E. Pilat-Lohinger and M. Scherf acknowledge support by the Austrian Science Fund (FWF) NFN project S11601-N16, “Pathways to Habitability: From Disks to Active Stars, Planets and Life” and the related FWF NFN subprojects, S11604-N16 “Radiation & Wind Evolution from the T Tauri Phase to ZAMS & Beyond”, S11606-N16 “Magnetospheres”, S11607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies under Extreme Stellar Conditions”, S11608-N16 “Binary Stars”. S. Gebauer acknowledges support by the DFG project GZ: GR 2004/2-1 of the SPP 1833 “Building a Habitable Earth”. M. Godolt acknowledges financial support from the German Research Foundation (DFG) Project GO 2610/1-1. N. Tosi and N. Nikolaou acknowledge support from the Helmholtz Association (project VH-NG-1017). L. Grenfell, M. Güdel and L. Noack acknowledge the collaboration within the COST Action TD 1308. H. Lammer also acknowledge stimulating discussions with B. Marty from the CRPG-CNRS, University of Nancy regarding isotope data analysis of carbonaceous chondrites and planetary atmospheres, E. Marcq from LATMOS/IPSL, UVSQ, Université Paris-Saclay on magma ocean-related steam atmospheres, and L. Fossati from the Space Research Institute (IWF) of the Austrian Academy of Sciences (ÖAW). Furthermore, H. Lammer thanks L. Sproß from the University of Graz for the illustration shown in Fig. 16. The authors also thank the International Space Science Institute (ISSI) in Bern, the ISSI-Beijing team “Astrobiology” and the ISSI team“The Early Evolution of the Atmospheres of Earth, Venus, and Mars”, and P. Odert for discussions on the losses of volatiles from planetary embryos and protoplanets. Finally the authors thank J. F. Kasting from the Department of Geosciences at the Penn State University and an anonymous referee for their suggestions and recommendations which helped to improve this work.

References

  1. Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter 100:27–39ADSGoogle Scholar
  2. Abe Y, Matsui T (1985) The formation of an impact-generated \(\text{ H }_2\text{ O }\) atmosphere and its implications for the early thermal history of the Earth. J Geophys Res 90:C545–C559Google Scholar
  3. Abe Y, Matsui T (1988) Evolution of an impact-generated H\(_2\)O-CO\(_2\) atmosphere and formation of a hot proto-ocean on Earth. J Atmos Sci 45:3081–3101ADSGoogle Scholar
  4. Airapetian VS, Glocer A, Gronoff G, Hébrard E, Danchi W (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci 9:452–455ADSGoogle Scholar
  5. Albaréde F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus and Moon. Geochemistry 339:917–927Google Scholar
  6. Albaréde F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–1233ADSGoogle Scholar
  7. Alexander CMOD, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler NR (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–723ADSGoogle Scholar
  8. Amerstorfer UV, Gröller H, Lammer H, Tian F, Noack L, Sherf M, Johnstone C, Tu L, Güdel M (2017) Escape and evolution of Mars’ \(\text{ CO }_2\) atmosphere: influence of suprathermal atom. J Geophys Res 122:1321–1337Google Scholar
  9. Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342:255–257ADSGoogle Scholar
  10. Atreya SK, Trainer MG, Franz HB, Wong MH, Manning HLK, Malespin CA, Mahaffy PR, Conrad PG, Brunner AE, Leshin LA, Jones JH, Webster CR, Owen TC, Pepin RO, Navarro-González R (2016) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys Res Lett 40:5605–5609ADSGoogle Scholar
  11. Aulbach S, Stagno V (2016) Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44:751–754ADSGoogle Scholar
  12. Auvergne M, Bodin P, Boisnard L, Buey J-T, Chaintreuil S, the CoRoT Team (2009) The CoRoT satellite in flight: description and performance. Astron Astrophys 506:411–424Google Scholar
  13. Ayres TR (1997) Evolution of the solar ionizing flux. J Geophys Res 102:1641–1651ADSGoogle Scholar
  14. Baes M, Gerya T, Sobolev SV (2016) 3D thermo-mechanical modeling of plume-induced subduction initiation. Earth Planet Sci Lett 453:193–203ADSGoogle Scholar
  15. Bakos G, Noyes RW, Kovács G, Stanek KZ, Sasselov DD, Domsa I (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. Publ Astron Soc Pac 116:266–277ADSGoogle Scholar
  16. Ballmer MD, Lourenago DL, Hirose K, Caracas R, Nomura R (2017) Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem Geophys Geosyst 18:2785–2806ADSGoogle Scholar
  17. Becker RH, Clayton RN, Galimov EM, Lammer H, Marty B, Pepin RO, Wieler R (2003) Isotopic signatures of volatiles in terrestrial planets. Space Sci Rev 106:377–410ADSGoogle Scholar
  18. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466ADSGoogle Scholar
  19. Berner RA, Kothvala Z (2001) GEOCARB III: a revised model of atmospheric \(\text{ CO }_2\) over phanerozoic time. Am J Sci 301:182–204ADSGoogle Scholar
  20. Bockelée-Morvan D, Crovisier J, Mumma MJ, Weaver HA (2004) The composition of cometary volatiles. In: Festou MC, Keller HU, Weaver HA (eds) Comets 2. University Arizona Press, Tucson, pp 391–423Google Scholar
  21. Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67:391–408ADSGoogle Scholar
  22. Bonsor A, Leinhardt ZM, Carter PJ, Elliott T, Walter MJ, Stewart ST (2014) A collisional origin to Earth’s non-chondritic composition? Icarus 257:291–300Google Scholar
  23. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:1–12Google Scholar
  24. Borucki WJ, Koch D, Basri G, Batalha N, Brown T, the Kepler Team (2010) Kepler planet-detection mission: introduction and first results. Science 327:977–980Google Scholar
  25. Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81ADSGoogle Scholar
  26. Bouhifd MA, Jephcoat AP (2011) Convergence of Ni and Co metal-silicate partion coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet Sci Lett 307:341–348ADSGoogle Scholar
  27. Bouvier A, Boyet M (2016) Primitive Solar System materials and Earth share a common initial \(^{142}\text{ Nd }\) abundance. Nature 537:399–402ADSGoogle Scholar
  28. Boyet M, Carlson RW (2005) \(^{142}\text{ Nd }\) evidence for early (\(>\)4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581ADSGoogle Scholar
  29. Bösswetter A, Lammer H, Kulikov YuN, Motschmann U, Simon S (2010) nonthermal water loss of the early Mars: 3D multi-ion hybrid simulations. Planet Space Sci 58:2013–2043Google Scholar
  30. Brack A, Horneck G, Cockell CS, Bérces A, Belisheva NK, Eiroa C, Henning T, Tom Herbst, Kaltenegger L, Alain Léger, Liseau R, Lammer H, Selsis F, Beichman C, Danchi W, Fridlund M, Lunine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Schneider J, Stam D, Tinetti G, White GJ (2010) Origin and evolution of life on terrestrial planets. Astrobiology 10:69–76ADSGoogle Scholar
  31. Brasser R (2013) The formation of Mars: building blocks and accretion time scale. Space Sci Rev 174:1–4ADSGoogle Scholar
  32. Brasser R, Matsumura S, Ida S, Mojzsis SJ, Werner SC (2016a) Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. Astrophys J 821:18–36Google Scholar
  33. Brasser R, Mojzsis SJ, Werner SC, S Matsumura, Ida S (2016b) Late veneer and late accretion to the terrestrial planets. Earth Planet Sci Lett 455:85–93ADSGoogle Scholar
  34. Brasser R, Mojzsis SJ, Matsumura S, Ida S (2017) The cool and distant formation of Mars. Earth Planet Sci Lett 468:85–93ADSGoogle Scholar
  35. Broeg CH, Benz W (2012) Giant planet formation: episodic impacts versus gradual core growth. Astron Astrophys 538:90ADSzbMATHGoogle Scholar
  36. Brown M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:961–64ADSGoogle Scholar
  37. Buhler PB, Fasset CI, Head JW III, Lamb MP (2017) Timescales of fluvial activity and intermittency in Milna crater, Mars. Icarus 241:130–147ADSGoogle Scholar
  38. Buick R (2007) Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100ADSGoogle Scholar
  39. Busigny V, Cartigny P, Philippot P (2011) Nitrogen isotopes in ophiolitic metagabbros: a re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim Cosmochim Acta 75:7502–7521ADSGoogle Scholar
  40. Busigny V, Bebout GE (2013) Nitrogen in the silicate Earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9:353–358Google Scholar
  41. Caffee MW, Hudson GB, Velsko C, Jr Alexander E C, Huss GR, Chivas AR (1988) Non-atmospheric noble gases from \(\text{ CO }_2\) well gases. Lunar Planet Sci XIX. Lunar Planetary Institute, Houston, pp 154–155Google Scholar
  42. Caffee MW, Hudson GB, Velsko C, Huss GR, Jr Alexander E C, Chivas AR (1999) Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 285:2115–2118Google Scholar
  43. Campbell IH, H O’Neill, C St (2012) Evidence against a chondritic Earth. Nature 483:553–558ADSGoogle Scholar
  44. Cameron AGW (1983) Origin of the atmospheres of the terrestrial planets. Icarus 56:195–201ADSGoogle Scholar
  45. Canfield DE, Glazer AN, Falkowiski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196ADSGoogle Scholar
  46. Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90ADSGoogle Scholar
  47. Canup RM (2004) Origin of terrestrial planets and the Earth–Moon system. Phys Today 57:56–62Google Scholar
  48. Carlucci AF, McNally PM (1969) Nitrification by marine bacteria in low concentrations of substrate and oxygen. Limnol Oceanogr 14:736–739ADSGoogle Scholar
  49. Carr MH (1989) Recharge of the early atmosphere of Mars by impact-induced release of \(\text{ CO }_2\). Icarus 79:311–327ADSGoogle Scholar
  50. Carter PJ, Leinhardt ZM, Elliott T, Walter MJ, Stewart ST (2015) Compositional evolution during rocky protoplanet accretion. Astrophys J 813:72ADSGoogle Scholar
  51. Cartigny P, Marty B (2013) Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9:359–366Google Scholar
  52. Cassata WS (2017) Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet Sci Lett 479:322–329ADSGoogle Scholar
  53. Castillo-Rogez J, Johnson TV, Lee MH, Turner NJ, Matson DL, Lunine J (2009) 26 Al decay: heat production and a revised age for iapetus. Icarus 204:658–662ADSGoogle Scholar
  54. Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–844ADSGoogle Scholar
  55. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20ADSGoogle Scholar
  56. Catling DC, Glein C, Zahnle KJ, McKay CP (2005) Why \(\text{ O }_2\) is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5:415–438ADSGoogle Scholar
  57. Catling DC, Kasting JF (2017) Atmospheric evolution on inhabited and lifeless worlds. Cambridge Univ Press, Cambridge, p 592Google Scholar
  58. Cawood PA, Kröner A, Pisarevsky S (2006) Precambrian plate tectonics: criteria and evidence. Geol Soc Am Today 16:4–11Google Scholar
  59. Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327ADSGoogle Scholar
  60. Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224ADSGoogle Scholar
  61. Charnay B, Forget F, Wordsworth R, Leconde J, Millour E, Codron F, Spiga A (2013) Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J Geophys Res 118:10414–10431Google Scholar
  62. Charnay B, Le Hir G, Fluteau F, Catling DC (2017) A warm or a cold early Earth? New insights from a 3-D climate-carbon model. Earth Planet Sci Lett 474:97–109ADSGoogle Scholar
  63. Chassefiére E (1996a) Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J Geophys Res 101:26039–26056ADSGoogle Scholar
  64. Chassefiére E (1996b) Hydrodynamic escape of oxygen from primitive atmospheres: application to the cases of Venus and Mars. Icarus 124:537–552ADSGoogle Scholar
  65. Chassefiére E, Leblanc F (2011) Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet Sci Lett 310:262–271ADSGoogle Scholar
  66. Claire MW, Sheets J, Cohen M, Ribas I, Meadows VS, Catling DC (2012) The evolution of solar flux from 0.1 nm to 160 \(\mu \text{ m }\): quantitative estimates for planetary studies. Astrophys J 757:95ADSGoogle Scholar
  67. Clarke WB, Beg MA, Craig H (1969) Excess \(^3\text{ He }\) in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220ADSGoogle Scholar
  68. PE Cloud (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736Google Scholar
  69. Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J Geophys Res 112:E2Google Scholar
  70. Conrad PG, Malespin CA, Franz HB, Pepin RO, Trainer MG, Schwenzer SP, Atreya SK, Freissinet C, Jones JH, Manning H, Owen T, Pavlova AA, Wiens RC, Wong MH, Mahaffy PR (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet Sci Lett 454:1–9ADSGoogle Scholar
  71. Craig H, Lupton JE (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385ADSGoogle Scholar
  72. Cubillos P, Erkaev EV, Juvan I, Fossati L, Johnstone CP, Lammer H, Lendl M, Odert P, Kislyakova KG (2017) An overabundance of low-density Neptune-like planets. MNRAS 466:1868–1879ADSGoogle Scholar
  73. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Limnol Oceanogr 54:1643–1652Google Scholar
  74. Dauphas N, Kasting JF (2011) Low \(\text{ P }\text{ CO }_2\) in the pore water not in the Archean air. Nature 474:E2Google Scholar
  75. Dauphas N, Pourmand A (2011) Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492ADSGoogle Scholar
  76. Debaille V, Brandon AD, Yin QZ, Jacobsen B (2007) Coupled \(^{142}\text{ Nd }-^{143}\text{ Nd }\) evidence for a protracted magma ocean in Mars. Nature 450:525–528ADSGoogle Scholar
  77. Dehant V, Lammer H, Kulikov YuN, Grießmeier J-M, Breuer D, Verhoeven O, Karatekin Ö, van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci Rev 129:279–300ADSGoogle Scholar
  78. Delano JW (2001) Redox history of the Earth’s Interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341ADSGoogle Scholar
  79. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336ADSGoogle Scholar
  80. Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nat Geosci 8:552–555ADSGoogle Scholar
  81. Dixon ET, Honda M, McDougall I, Campbell IH, Sigridsson I (2000) Preservation of neon-solar neon isotopic ratios in Icelandic basalds. Earth Planet Lett 180:309–324ADSGoogle Scholar
  82. Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44ADSGoogle Scholar
  83. Dohm JM, Baker VR, Boynton WV, Fairén AG, Ferris JC, Finch M, Furfaro R, Hare TM, Janes DM, Kargel JS, Karunatillake S, Keller J, Kerry K, Kimi KJ, Komatsu G, Mahaneyk WC, Schulze-Makuch D, Marinangeli L, Ori GG, Ruiz J, Wheelock SJ (2008) GRS evidence and the possibility of paleooceans on Mars. Planet Space Sci 57:664–684ADSGoogle Scholar
  84. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–65ADSGoogle Scholar
  85. Domagal-Goldman SD, Segura A, Claire MW, Robinson TD, Meadows VS (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys J 792:15Google Scholar
  86. Driese SG, Jirsa MA, Ren Minghua, Brantley SL, Sheldon ND, Parker D, Scmitz M (2011) Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189:1–17ADSGoogle Scholar
  87. Elkins-Tanton LT (2008) Linked magma ocean solidifcation and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191ADSGoogle Scholar
  88. Elkins-Tanton LT (2011) Formation of early water oceans on rocky planets. Astrophys Space Sci 332:359–364ADSGoogle Scholar
  89. Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40:113–139ADSGoogle Scholar
  90. Elkins-Tanton LT, Weiss BP, Zuber MT (2003) Chondrites as samples of differentiated planetesimals. Earth Planet Sci Lett 305:1–10ADSGoogle Scholar
  91. Erkaev NV, Lammer H, Odert P, Kulikov YuN, Kislyakova KG, Khodachenko ML, Güdel M, Hanslmeier A, Biernat HK (2013) XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. Astrobiology 13:1011–1029ADSGoogle Scholar
  92. Erkaev NV, Lammer H, Elkins-Tanton LT, Stökl A, Odert P, Marcq E, Dorfi EA, Kislyakova KG, Kulikov YuN, Leitzinger M, Güdel M (2014) Escape of the Martian protoatmosphere and initial water inventory. Planet Space Sci 98:106–119ADSGoogle Scholar
  93. Fairén AG (2017) Icy Mars lakes warmed by methane. Nat Geosci 10:717–718ADSGoogle Scholar
  94. Farquhar J, Zerkle AL, Bekker A (2014) Geologic and geochemical constraints on Earth’s early atmosphere. In: Holland DH, Turekian K (eds) Treatise in geochemistry: reference module in earth systems and environmental sciences, vol 6, pp 91–138Google Scholar
  95. Fassett CI, Head JWIII (2005) New evidence for fluvial sedimentary deposits on Mars: deltas formed in a crater lake in the Nili Fossae region. Geophys Res Lett 32:L14201ADSGoogle Scholar
  96. Feigelson ED, Garmire GP, Pravdo SH (2002) Magnetic flaring in the pre-main-sequence Sun and implications for the early solar system. Astrophys J 572:335–349ADSGoogle Scholar
  97. Fennel K, Follows M, Falkowski P (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci 305:526–45ADSGoogle Scholar
  98. Feulner G (2012) The faint young Sun problem. Rev Geophys 50:1–29Google Scholar
  99. Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157ADSGoogle Scholar
  100. Fischer-Gödde M, Kleine T (2017) Ruthenium isotopic evidence for an inner solar system origin of the later vaneer. Nature 541:525–527ADSGoogle Scholar
  101. Flament N, Coltice N, Rey PF (2008) A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet Sci Lett 275:326–336ADSGoogle Scholar
  102. Forget F, Wordsworth R, Millour E, Madeleine J-B, Kerber L, Leconte J, Marcq E, Haberle RM (2013) 3D modelling of the early Martian climate under a denser \(\text{ CO }_2\) atmosphere: temperatures and \(\text{ CO }_2\) ice clouds. Icarus 222:81–99ADSGoogle Scholar
  103. Fossati L, Erkaev NV, Lammer H, Cubillos PE, Odert P, Juvan I, Kislyakova KG, Lendl M, Kubyshkina D, Bauer SJ (2017) Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron Astrophys 598:A90ADSGoogle Scholar
  104. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bowman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B 368:1621Google Scholar
  105. Fox JL (1993) The production and escape of nitrogen atoms on Mars. J Geophys Res 98:3297–3310ADSGoogle Scholar
  106. Frey HV (2006) Impact constraints on the age and origin of the lowlands of Mars. Geophys Res Lett 33:L08S02Google Scholar
  107. Fridlund M, Eiroa C, Henning T, Herbst T, Kaltenegger L, Léger A, Liseau R, Lammer H, Selsis F, Beichman C, Danchi W, Lunine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Schneider J, Stam D, Tinetti G, White GJ (2010) A roadmap for the detection and characterization of other Earths. Astrobiology 10:113–119ADSGoogle Scholar
  108. Frost DJ, Liebske C, McCammon C, Rubie DC (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420ADSGoogle Scholar
  109. Füri E, Marty B (2015) Nitrogen isotope variations in the solar system. Nat Geosci 8:515–522ADSGoogle Scholar
  110. Gaillard F, Scaillet B, Arndt NT (2011) Atmospehric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232ADSGoogle Scholar
  111. Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–48ADSGoogle Scholar
  112. Gallet F, Bouvier J (2013) Improved angular momentum evolution model for solar-like stars. Astron Astrophys 556:A36ADSGoogle Scholar
  113. Galloway JN (2003) The global nitrogen cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 557–583Google Scholar
  114. Gebauer S, Grenfell JL, Stock JW, Lehmann R, Godolt M, von Paris P, Rauer H (2017) Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analog planets with a coupled atmosphere biogeochemical model. Astrobiology 17:27–54ADSGoogle Scholar
  115. Geiss J (1973) Solar wind composition and implications about the history of the solar system. In: Internat Cosmic Ray Conf, 13th Conf Papers. Univ Denver, vol 5, pp 3375–3398Google Scholar
  116. Genda H, Abe Y (2003) Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164:149–162ADSGoogle Scholar
  117. Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–844ADSGoogle Scholar
  118. Gerya TV, Stern RJ, Baes M, Sobolev SV, Whattam SA (2015) Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527:221–225ADSGoogle Scholar
  119. Gillmann C, Chassefiére E, Lognonné P (2009) A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet Sci Lett 286:503–513ADSGoogle Scholar
  120. Godfrey LV, Falkowski PG (2009) The cycling and redox state of nitrogen in the Archaean ocean. Nat Geosci 2:725–729ADSGoogle Scholar
  121. Goldblatt C (2008) Bistability of atmospheric oxygen, the great oxidation and climate. Ph.D. thesisGoogle Scholar
  122. Goldblatt C, Claire MW, Lenton TM, Matthews AJ, Watson AJ, Zahnle KJ (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci 2:891–896ADSGoogle Scholar
  123. Goldblatt C, Zahnle KJ (2011) Faint young Sun paradox remains. Nature 474:E1ADSGoogle Scholar
  124. Greber ND, Dauphas N, Bekker A, Ptáček MP (2017) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357:1271–1274ADSGoogle Scholar
  125. Grott M, Morschhauser A, Breuer D, Hauber E (2011) Volcanic outgassing of \(\text{ CO }_2\) and \(\text{ H }_2\text{ O }\) on Mars. Earth Planet Sci Lett 308:391–400ADSGoogle Scholar
  126. Grenfell JL, Gebauer S, von Paris P, Godolt M, Hedelt P, Patzer ABC, Stracke B, Rauer H (2011) Sensitivity of biomarkers to changes in chemical emissions in the Earth’s Proterozoic atmosphere. Icarus 211:81–88ADSGoogle Scholar
  127. Güdel M, Guinan EF, Skinner SL (1997) The X-ray Sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys J 483:947–960ADSGoogle Scholar
  128. Güdel M (2007) The Sun in time: activity and environment. Living Rev Sol Phys 4:3ADSGoogle Scholar
  129. Haendel D, Mühle K, Nitzsche H-M, Stiehl G, Wand U (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50:749–758ADSGoogle Scholar
  130. Halama R, Bebout GE, John T, Scambelluri M (2014) Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle. Int J Earth Sci 103:2081–2099Google Scholar
  131. Halliday AN, Wänke H, Birck JL, Clayton RN (2001) The accretion, composition and early differentiation of Mars. Space Sci Rev 96:197–230ADSGoogle Scholar
  132. Halliday AN (2013) The origins of volatiles in the terrestrial planets. Geochim Cosmochim Acta 105:146–171ADSGoogle Scholar
  133. Halliday AN (2014) The origin and earliest history of the Earth. In: Davis AM (ed) Planets, asteroids, comets and the solar system. Treatise on geochemistry, pp 149–211Google Scholar
  134. Hamano K, Abe Y, Genda H (2013) Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497:607–610ADSGoogle Scholar
  135. Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20ADSGoogle Scholar
  136. Hansen BMS (2009) Formation of the terrestrial planets from a narrow annulus. Astrophys J 703:1131–1140ADSGoogle Scholar
  137. Harper CL, Jacobsen SB (1996) Noble gases and Earth’s accretion. Science 273:1814–1818ADSGoogle Scholar
  138. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137ADSGoogle Scholar
  139. Hedges SB (2002) The origin and evolution of model organisms. Nature 3:838–848Google Scholar
  140. Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428:736–738ADSGoogle Scholar
  141. Hébrard E, Marty B (2014) Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth Planet Sci Lett 385:40–48ADSGoogle Scholar
  142. Hier-Majumder S, Hirschmann MM (2017) The origin of volatiles in the Earth’s mantle. Geochem Geophys Geosyst 18:3078–3092ADSGoogle Scholar
  143. Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Phys Scr 130:014024Google Scholar
  144. Hin RC, Coath CD, Carter PJ, Nimmo F, Yi-Jen Lai, Pogge von Strandmann PAE, Willbold M, Leinhardt ZM, Walter MJ, Elliot T (2017) Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549:511–515ADSGoogle Scholar
  145. Hirschmann MM (2009) Ironing out the oxidation of Earth’s mantle. Science 325:545–546ADSGoogle Scholar
  146. Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter 179:60–71ADSGoogle Scholar
  147. Höning D, Hansen-Goos H, Airo A, Spohn T (2014) Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet Space Sci 98:5–13ADSGoogle Scholar
  148. Hoffmann JH, Oyama VI, Zahn UV (1980) Measurements of the lower atmospheric composition: a comparison of results. J Geophys Res 85:7871–7881ADSGoogle Scholar
  149. Holland HD (1962) Petrologic studies. In: Buddington AF, Engel EJ, James HL, Leonard BF (eds) A volume to honor. Geological Society of America, New York, pp 447–477Google Scholar
  150. Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York, p 351Google Scholar
  151. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  152. Holm NG (1992) Marine hydrothermal systems and the origins of life. Orig Life Evol Biosph 22:181–242ADSGoogle Scholar
  153. Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151ADSGoogle Scholar
  154. Holloway JM, Dahlgren RA (2002) Nitrogen in rock: occurences and biogeochemical implications. Glob Biochem Cycles 16:1–17Google Scholar
  155. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from \(>4 \text{ Gyr }\) zircons suggests Hadean plate boundary interactions. Nature 456:493–96ADSGoogle Scholar
  156. Howe AR, Burrows A, Verne W (2014) Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. Astrophys J 787:173AADSGoogle Scholar
  157. Hutchins KS, Jakosky BM (1996) Evolution of Martian atmospheric argon: implications for sources of volatiles. J Geophys Res 101:14933–14950ADSGoogle Scholar
  158. Iijima Y, Goto K, Minoura K, Komatsu G, Imamura F (2014) Hydrodynamics of impact-induced tsunami over the Martian ocean. Planet Space Sci 95:33–44ADSGoogle Scholar
  159. Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys J 537:1013–1025ADSGoogle Scholar
  160. Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. Astrophys J 648:696–706ADSGoogle Scholar
  161. Ikoma M, Hori Y (2012) In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys J 753:66ADSGoogle Scholar
  162. Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today 12:4–9Google Scholar
  163. Jacob DJ (1999) Introduction to atmospheric chemistry, vol 266. Princeton University Press, PrincetonGoogle Scholar
  164. Jacobson SA, Morbidelli A, Raymond SN, O’Brien DP, Walsh KJ, Rubie DC (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87ADSGoogle Scholar
  165. Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci 33:531–570ADSGoogle Scholar
  166. Jakosky BM, Pepin RO, Johnson RE, Fox JL (1994) Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111:271–288ADSGoogle Scholar
  167. Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alseed N (2017) Science 355:1408–1410Google Scholar
  168. Jellinek AM, Jackson MG (2015) Conenctions between the bulk composition, geodynamics and habitability of Earth. Nat Geosci 8:587–593ADSGoogle Scholar
  169. Johansen A, Blum J, Tanaka H, Ormel C, Bizzarro M, Rickman H (2014) The multifaceted planetesimal formation process. In: Beuther H, Kessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 547–570Google Scholar
  170. Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth Sci Rev 148:150–173Google Scholar
  171. Johnson BW, Goldblatt C (2018) EarthN: a new Earth system nitrogen model. Geochem Geophys Geosys. arXiv:1805.00893v1
  172. Johnstone CP, Güdel M, Stökl A, Lammer H, Tu L, Kislyakova KG, Lüftinger T, Odert P, Erkaev NV, Dorfi EA (2015a) The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys J Lett 815:A12ADSGoogle Scholar
  173. Johnstone CP, Güdel M, Lüftinger T, Toth G, Brott I (2015b) Stellar winds on the main-sequence I. Wind model. Astron Astrophys 577:27ADSGoogle Scholar
  174. Johnstone CP, Güdel M, Brott I, Lüftinger T (2015c) Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron Astrophys 577:28ADSGoogle Scholar
  175. Kanzaki Y, Murakami T (2015) Estimates of atmospheric \(\text{ CO }_2\) in the Neoarchean-Paleoproterocoic from paleosols. Geochim Cosmochim Acta 159:190–219ADSGoogle Scholar
  176. Karki BB, Stixrude LP (2010) Viscosity of \(\text{ MgSiO }_3\) liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328:740–742ADSGoogle Scholar
  177. Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423ADSGoogle Scholar
  178. Kasting JF, Donahue TM (1980) The evolution of atmospheric ozone. J Geophys Res 85:3255–3263ADSGoogle Scholar
  179. Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res 87:3091–3098ADSGoogle Scholar
  180. Kasting JF, Pollack JB (1983) Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53:479–508ADSGoogle Scholar
  181. Kasting JF, Pollack JB, Crisp D (1984) Effects of high \(\text{ CO }_2\) levels on surface temperature and atmospheric oxidation state of the early Earth. J Atm Chem 1:403–428Google Scholar
  182. Kasting JF, Pollack JB, Ackerman TP (1984) Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57:335–355ADSGoogle Scholar
  183. Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494ADSGoogle Scholar
  184. Kasting JF (1991) CO\(_2\) condensation and the climate of early Mars. Icarus 94:1–13ADSGoogle Scholar
  185. Kasting JF (1992) Paradox lost and paradox found. Nature 355:676–77ADSGoogle Scholar
  186. Kasting JF, Brown LL, Acord JM, Pollack JB (1992) Was early Mars warmed by ammonia? In: Workshop on the Martian surface and atmosphere through time. Lunar and Planetary Inst, pp 84–85Google Scholar
  187. Kasting JF (1993) Earth’s early atmosphere. Nature 259:920–926Google Scholar
  188. Kasting JF, Whitmire DP, Reynolds RT (1993a) Habitable zones around main sequence stars. Icarus 101:108–128ADSGoogle Scholar
  189. Kasting JF, Eggler DH, Raeburn SP (1993b) Mantle redox evolution and the case for a reduced Archean atmosphere. J Geol 101:245–257ADSGoogle Scholar
  190. Kasting JF, Schultz PA (1996) Reservoir time-scales for anthropogenic \(\text{ CO }_2\) in the atmosphere: commentary. Tellus B 48(5):703ADSGoogle Scholar
  191. Kasting JF (1998) Habitable zones around stars and the search for extraterrestrial life. In: American Astron Soc, 193rd AAS Meeting, Bull American Astron Soc, vol 30, p 1328Google Scholar
  192. Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci 361:917–29Google Scholar
  193. Kasting JF, Siefert JL (2011) Biogeochemistry. The nitrogen fix. Nature 412:26–27ADSGoogle Scholar
  194. Kasting JF (2013) What caused the rise of atmospheric O\(_2\). Chem Geol 362:13–25ADSGoogle Scholar
  195. Kelly KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607ADSGoogle Scholar
  196. Kelley KA, Plank T, Newman S, Stolper EM, Grove TL, Parman S, Hauri EH (2010) Mantle melting as a function of water beneath the Mariana arc. J Petrol 51:1711–1738ADSGoogle Scholar
  197. Kerber L, Forget F, Wordsworth R (2015) Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261:133–148ADSGoogle Scholar
  198. Kharecha P, Kasting JF, Siefert J (2005) A coupled atmosphere ecosystem model of the early Archean Earth. Geobiology 3:53–76Google Scholar
  199. Kiehl JT, Dickinson RE (1987) A study of the radiative effects of enhanced atmospheric \(\text{ CO }_2\) and \(\text{ CH }_4\) on early Earth surface temperatures. J Geophys Res 92:2991–2998ADSGoogle Scholar
  200. Kite ES, Williams J-P, Lucas A, Aharonson O (2014) Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat Geosci 7:335–339ADSGoogle Scholar
  201. Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955ADSGoogle Scholar
  202. Kleine T (2011) Earth’s patchy late veneer. Nature 477:168–169ADSGoogle Scholar
  203. Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. Astrophys J 150:551ADSGoogle Scholar
  204. Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143:15–27ADSGoogle Scholar
  205. Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. J Geol 107:515–54ADSGoogle Scholar
  206. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102:11131–11136ADSGoogle Scholar
  207. Korenaga J (2008) Plate tectonics, flood basalts, and the evolution of Earth’s oceans. Terra Nova 20:419–39ADSGoogle Scholar
  208. Korenaga J (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Ann Rev Earth Planet Sci 41:117–151ADSGoogle Scholar
  209. Kruijer TS, Kleine T, Borg LE, Gregory A, Irving AJ, Bischoff A, Agee CB (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth Planet Sci Lett 474:345–354ADSGoogle Scholar
  210. Kuhn WR, Atreya SK (1979) Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37:207–213ADSGoogle Scholar
  211. Kulikov YuN, Lammer H, Lichtenegger HIM, Terada N, Ribas I, Kolb C, Langmayr D, Lundin R, Guinan EF, Barabash S, Biernat HK (2006) Atmospheric and water loss from early Venus. Planet Space Sci 54:1425–1444ADSGoogle Scholar
  212. Kulikov YuN, Lammer H, Lichtenegger HIM, Penz T, Breuer D, Spohn T, Lundin R, Biernat HK (2007) A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci Rev 129:207–243ADSGoogle Scholar
  213. Kunze M, Godolt M, Langematz U, Grenfell JL, Hamann-Reinus A, Rauer H (2014) Investigating the early Earth faint young Sun problem with a general circulation model. Planet Space Sci 98:77–92ADSGoogle Scholar
  214. Kurokawa H, Kurosawa K, Usui T (2017) A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299:443–459ADSGoogle Scholar
  215. Lammer H, Kasting JF, Chassefiére E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139:399–436ADSGoogle Scholar
  216. Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Grießmeier J-M, Stangl G, Cockell CS, Kulikov YuN, Grenfell JL, Rauer H (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–249ADSGoogle Scholar
  217. Lammer H, Kislyakova KG, Odert P, Leitzinger M, Schwarz R, Pilat-Lohinger E, Kulikov YuN, Khodachenko ML, Güdel M, Hanslmeier A (2011) Pathways to Earth-like atmospheres extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig Life Evol Biosph 41:503–522ADSGoogle Scholar
  218. Lammer H, Chassefiére E, Karatekin Ö, Morschhauser A, Niles PB, Mousis O, Odert P, Möstl UV, Breuer D, Dehant V, Grott M, Gröller H, Hauber E, Pham San, Binh Lê (2013) Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci Rev 174:113–154ADSGoogle Scholar
  219. Lammer H, Stökl A, Erkaev NV, Dorfi EA, Odert P, Güdel M, Kulikov YuN, Kislyakova KG, Leitzinger M (2014) Origin and loss of nebula-captured hydrogen envelopes from ‘sup’- to ‘super-Earths’ in the habitable zone of Sun-like stars. MNRAS 439:3225–3238ADSGoogle Scholar
  220. Lammer H, Erkaev NV, Fossati L, Juvan I, Odert P, Cubillos PE, Guenther E, Kislyakova KG, Johnstone CP, Lüftinger T, Güdel M (2016) Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. MNRAS 461:L62–L66ADSGoogle Scholar
  221. LaTourrette T, Wasserburg GJ (1998) Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet Sci Lett 158:91–108ADSGoogle Scholar
  222. Lebrun T, Massol H, Chassefiére E, Davaille A, Marcq E, Sarda P, Leblanc F, Brandeis G (2013) Thermal evolution of an early magma ocean in interaction with the atmosphere. J Geophys Res (Planets) 118:1155–1176ADSGoogle Scholar
  223. Levison HF, Morbidelli A, Tsiganis K, Nesvorny D, Gomes R (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron J 142:152ADSGoogle Scholar
  224. Li Y, Wiedenbeck M, Shcheka S, Keppler H (2013) Nitrogen solubility in upper mantle minerals. Earth Planet Sci Lett 377:311–323ADSGoogle Scholar
  225. Li Y, Keppler H (2014) Nitrogen speciation in mantle and crustal fluids. Geochim Cosmochim Acta 129:13–32ADSGoogle Scholar
  226. Li Z-XA, Lee C-TA (2004) The constancy of upper mantle \(\text{ fO }_2\) through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett 228:483–493ADSGoogle Scholar
  227. Lichtenegger HIM, Lammer H, Grießmeier J-M, Kulikov YuN, von Paris P, Hausleitner W, Krauss S, Rauer H, Kulikov YuN, von Paris P, Hausleitner W, Krauss S, Rauer H (2010) Aeronomical evidence for higher \(\text{ CO }_2\) levels during Earth’s Hadean epoch. Icarus 210:1–7ADSGoogle Scholar
  228. Lichtenegger HIM, Kislyakova KG, Odert P, Erkaev NV, Lammer H, Gröller H, Johnstone CP, Elkins-Tanton L, Tu L, Güdel M, Holmström M (2016) Solar XUV and ENA-driven water loss from early Venus’ steam atmosphere. J Geophys Res 121:4718–4732Google Scholar
  229. Lillis RJ, Frey HV, Manga M (2008) Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys Res Lett 35:L14203ADSGoogle Scholar
  230. Lillis RJ, Robbins S, Manga M, Halekas JS (2013) Time history of the Martian dynamo from crater magnetic field analysis. J Geophys Res 118:1–24Google Scholar
  231. Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys J 309:846–857ADSGoogle Scholar
  232. Lu W, Cang X, Howard AD (2017) New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nature Commun 8:15766ADSGoogle Scholar
  233. Luger R, Barnes R, Lopez E, Fortney J, Jackson B, Meadows V (2015) Habitable evaporated cores: Transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15:57–88ADSGoogle Scholar
  234. Lumair GW, Shukolyukov A (1998) Early solar system timescales according to \(^{53}\text{ Mn }\text{- }^{53}\text{ Cr }\) systematics. Geochim Csmochim Acta 62:2863–2886ADSGoogle Scholar
  235. Lunine JI, O’Brien SP, Raymond SN, Morbidelli A, Quinn T, Graps AL (2011) Dynamic models of terrestrial planet formation. Adv Sci Lett 4:325–338Google Scholar
  236. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 2:1–9Google Scholar
  237. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315ADSGoogle Scholar
  238. Maggio A, Sciortino S, Vaiana GS, Majer P, Bookbinder JA, Golub L, Jr Harnden F R, Rosner R (1987) Einstein Observatory survey of X-ray emission from solar-type stars: the late F and G dwarf stars. Astrophys J 315:687–699ADSGoogle Scholar
  239. Maindl TI, Dvorak R, Lammer H, Güdel M, Schäfer C, Speith R, Odert P, Erkaev NV, Kislyakova KG, Pilat-Lohinger E (2015) Impact induced surface heating by planetesimals on early Mars. Astron Astrophys 574:A22ADSGoogle Scholar
  240. Mahaffy PR, Webster ChR, Atreya SK, Franz H, Wong M, the MSL Science Team (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341:263–266Google Scholar
  241. Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614ADSGoogle Scholar
  242. Mamyrin BA, Tolstikhin IN, Anufriev GS, Kamensky IL (1969) Anomalous isotopic composition of helium in volcanic gases. Dokl Akad Nauk SSSR 184:1197–1199Google Scholar
  243. Manning CV, Zahnle KJ, McKay CP (2009) Impact processes of nitrogen on early Mars. Icarus 199:273–285ADSGoogle Scholar
  244. Marcq E (2012) A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J Geophys Res (Planets) 117:E01001ADSGoogle Scholar
  245. Marty B, Allé P (1994) Neon and Argon isotope constrains on Earth-atmosphere evolution. In: Matsuda J-I (ed) Noble Gas Geochemisty and Cosmochemistry. Terra Scientific Publishing Company, Tokyo, pp 191–204Google Scholar
  246. Marty B (1995) Nitrogen content of the mantle inferred from \(\text{ N }_2\)-Ar correlation in oceanic basalts. Nature 377:326–329ADSGoogle Scholar
  247. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66ADSGoogle Scholar
  248. Marty B, Dauphas N (2003) The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410ADSGoogle Scholar
  249. Marty B, Yokochi R (2006) Water in the Earth. Rev Mineral Geochem 62:421–450Google Scholar
  250. Marty B, Meibom A (2007) Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. EEarth 2:43–49ADSGoogle Scholar
  251. Marty B, Zimmermann L, Pujol M, Burgess R, Philippot P (2013) Nitrogen isotopic composition and density of the Archean atmosphere. Science 342:101–104ADSGoogle Scholar
  252. Maurice M, Tosi N, Samuel H, Plesa A-C, Hüttig C, Breuer D (2017) Onset of solid-state mantle convection and mixing during magma ocean solidification. J Geophys Res Planets 122:577–598ADSGoogle Scholar
  253. Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS 320:L55–L59ADSGoogle Scholar
  254. Masset FS, Papaloizou JCB (2003) Runaway migration and the formation of hot Jupiters. Astrophys J 588:494–508ADSGoogle Scholar
  255. Massol H, Hamano K, Tian F, Ikoma M, Abe Y, Chassefiére E, Davaille A, Genda H, Güdel M, Hori Y, Leblanc F, Marcq E, Sarda P, Shematovich VI, Stökl A, Lammer H (2016) Formation and evolution of protoatmospheres. Space Sci Rev 205:153–211ADSGoogle Scholar
  256. Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:52–47Google Scholar
  257. Mikhail S, Sverjensky DA (2014) Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat Geosci 7:816–819ADSGoogle Scholar
  258. Mikhail S, Barry PH, Sverjensky DA (2017) The relationship between mantle pH and the deep nitrogen cycle. Geochim Cosmochim Acta 209:149–160ADSGoogle Scholar
  259. Mizuno H, Nakazawa K, Hayashi C (1980) Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet Sci Lett 50:202–210ADSGoogle Scholar
  260. Mizuno H, Wetherill GW (1984) Grain abundance in the primordial atmosphere of the Earth. Icarus 59:74–86ADSGoogle Scholar
  261. Monteux J, Andrault D, Samuel H (2016) On the cooling of a deep terrestrial magma ocean. Earth Planet Sci Lett 448:140–149ADSGoogle Scholar
  262. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181ADSGoogle Scholar
  263. Montesi LGJ, Zuber MT (2003) Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J Geophys Res Planets 108:1–22Google Scholar
  264. Montmerle T, Augereau J-C, Chaussidon M, Gounelle M, Marty B, Morbidelli A (2006) 3. Solar System formation and early evolution: the first 100 million years. Earth Moon Planets 98:39–95ADSGoogle Scholar
  265. Moreira M, Breddam K, Curtice J, Kurz MD (2001) Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23ADSGoogle Scholar
  266. Morbidelli A, Chambers J, Lunine JI, Petit J-M, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and timescales for the delivery of water to the earth. Meteorit Planet Sci 35:1309–1320ADSGoogle Scholar
  267. Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171ADSGoogle Scholar
  268. Morbidelli A, Tsiganis K, Crida A, Levison H, Gomes R (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astrophys J 134:1790–1798ADSGoogle Scholar
  269. Morbidelli A, Brasser R, Gomes R, Levison HF, Tsiganis K (2010) Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron J 140:1391–1401ADSGoogle Scholar
  270. Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh K (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275ADSGoogle Scholar
  271. Moynier F, Yin Q-Z, Irisawa K, Boyet M, Jacobsen B, Rosing MT (2010) Coupled \(^{182}\text{ W }\text{- }^{142}\text{ Nd }\) constraint for early Earth differentiation. PNAS 107:10810–10814ADSGoogle Scholar
  272. Mullally F, Coughlin JL, Thompson SE, Rowe J, Burke C, the Kepler Team (2015) Planetary candidates observed by Kepler. VI. planet sample from Q1–Q16 (47 months). Astrophys J Supp 217:31Google Scholar
  273. Murthy VR, van Westrenen W, Fei Y (2003) Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423:163–165ADSGoogle Scholar
  274. Navarro-González R, McKay CP, Mvondo DN (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61–64ADSGoogle Scholar
  275. Neumann W, Breuer D, Spohn T (2014) Differentiation of vesta: implications for a shallow magma ocean. Earth Planet Sci Lett 395:267–280ADSGoogle Scholar
  276. Nicklas RW, Puchtel IS, Ash RD (2016) High-precision determination of the oxidation state of komatiite lavas using vanadium liquid-mineral partitioning. Chem Geol 433:36–45ADSGoogle Scholar
  277. Nicklas RW, Puchtel IS, Ash RD (2018) Redox state of the Archean mantle: evidence from V partitioning in 3.5-2.4 Ga komatiites. Geochim Cosmochim Acta 222:447–466ADSGoogle Scholar
  278. Noack L, Breuer D, Spohn T (2012) Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217(2):484–498ADSGoogle Scholar
  279. Noack L, Breuer D (2014) Plate tectonics on rocky exoplanets: influence of initial conditions and rheology. Planet Space Sci 98:41–49ADSGoogle Scholar
  280. Nutman AP, Friend CRL, Bennett VC (2002) Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archean tectonics. Tectonics 21:1005ADSGoogle Scholar
  281. Nutman AP, Bennett VC, Friend CRL, van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3.700-million-year-old microbial structures. Nature 537:535–538ADSGoogle Scholar
  282. Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001) Ages and geologic histories of Martian meteorites. Space Sci Rev 96:105–164ADSGoogle Scholar
  283. O’Brien DP, Morbidelli A, Levison HF (2006) Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58ADSGoogle Scholar
  284. O’Brien DP, Walsh KJ, Morbidelli A, Raymond SN (2014) Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239:74–84ADSGoogle Scholar
  285. O’Neill CO, Jellinek AM, Lenardic A (2007) Conditions for the inset of plate tectonics on terrestrial planets and moons. Earth Planet Sci Lett 261:20–32ADSGoogle Scholar
  286. O’Neill HSC, Palme H (2017) Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil Trans R Soc A 366:4205–4238Google Scholar
  287. Odert P, Lammer H, Erkaev NV, Nikolaou A, Lichtenegger HIM, Johnstone CP, Kislyakova KG, Leitzinger M, Tosi N (2018) Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307:327–346ADSGoogle Scholar
  288. Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75ADSGoogle Scholar
  289. Olson SL, Reinhard CT, Lyons TW (2016) Limited role for methane in the mid-Proterozoic greenhouse. PNAS 113:11447–11452ADSGoogle Scholar
  290. Owen T, Mahaffy PR, Niemann HB, Atreya S, Wong (2001) Protosolar nitrogen. Astrophys J 553:L77–L79ADSGoogle Scholar
  291. Owen JE, Mohanty S (2016) Habitability of terrestrial-mass planets in the HZ of M Dwarfs - I. H/He-dominated atmospheres. MNRAS 459:4088–4108ADSGoogle Scholar
  292. Owen JE, Wu Y (2016) Atmospheres of low-mass planets: the ‘boil-off’. Astrophys J 817:107ADSGoogle Scholar
  293. Oyama VI, Carle GC, Woeller F, Pollack JB, Reynolds RT (1980) Pioneer Venus gas chromatography of the lower atmosphere of Venus. J Geophys Res 85:7891–7902ADSGoogle Scholar
  294. Pallavicini R, Golub L, Rosner R, Vaiana GS, Ayres T, Linsky JL (1981) Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys J 248:279–290ADSGoogle Scholar
  295. Palumbo AM, Head JW III, Wordsworth RD (2018) Late Noachian icy highlands climate model: exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures. Icarus 2018:261–286ADSGoogle Scholar
  296. Parai R, Mukhopadhyay S (2012) How large is the subducted water flux? New constraints on mantle regassing rates. EPSL 317–318:396–406ADSGoogle Scholar
  297. Pierens A, Nelson RP (2008) Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron Astrophys 482:333–340ADSzbMATHGoogle Scholar
  298. Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron Astrophys 397:147–157ADSGoogle Scholar
  299. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchinson MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224ADSGoogle Scholar
  300. Pepin RO (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79ADSGoogle Scholar
  301. Pepin RO (1994) Evolution of the Martian atmosphere. Icarus 111:289–304ADSGoogle Scholar
  302. Pepin RO (1997) Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126:148–156ADSGoogle Scholar
  303. Pepin RO (2000) On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci Rev 92:371–395ADSGoogle Scholar
  304. Pepin RO, Porcelli D (2002) Origin of noble gases in the terrestrial planets. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem, vol 47. Mineralogical Society of America, Washington DC, pp 191–246Google Scholar
  305. Pham LBS, Karatekin Ö, Dehant V (2011) Effects of impacts on the atmospheric evolution: comparison between Mars, Earth and Venus. Planet Space Sci 59:1087–1092ADSGoogle Scholar
  306. Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734:L13ADSGoogle Scholar
  307. Plesa A-C, Tosi N, Breuer D (2014) Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of mars? Earth Planet Sci Lett 403:225–235ADSGoogle Scholar
  308. Plümper O, John T, Podladchikov YuY, Vrijmoed JC, Scambelluri M (2017) Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nat Geosci 10:150–156ADSGoogle Scholar
  309. Pollacco DL, Skillen I, Collier Cameron A, Christian DJ, Hellier C, Irwin J, Lister TA, Street RA, West RG, Anderson DR, Clarkson WI, Deeg H, Enoch B, Evans A, Fitzsimmons A, Haswell CA, Hodgkin S, Horne K, Kane SR, Keenan FP, Maxted PFL, Norton AJ, Osborne J, Parley NR, Ryans RSI, Smalley B, Wheatley PJ, Wilson DM (2006) The WASP project and the superWASP cameras. Publ Astron Soc Pac 118:1407–1418ADSGoogle Scholar
  310. Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSGoogle Scholar
  311. Porcelli D, Pepin RO (2000) Rare gas constraints on early Earth history. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 435–458Google Scholar
  312. Porcelli D, Pepin RO (2003) The origin of noble gases and major volatiles in the terrestrial planets. In: Holland HD, Turekian KK (eds) The atmosphere. Treatise on geochemistry, vol 4, pp 319–347Google Scholar
  313. Porcelli D, Cassen P, Woolum D, Wasserburg GJ (1998) Acquisition and early losses of rare gases from the deep Earth. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. Lunar and Planetary Inst, vol 597, pp 55–36Google Scholar
  314. Porcelli D, Cassen P, Woolum D (2001) Deep Earth rare gases: initial inventories, capture from the solar nebula and losses during Moon formation. Earth Planet Sci Lett 193:237–251ADSGoogle Scholar
  315. Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7:107–12Google Scholar
  316. Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite. Geochim Cosmochim Acta Suppl 73:A1059ADSGoogle Scholar
  317. Pujol M, Marty B, Burgess (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci 308:298–306Google Scholar
  318. Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF (2014) Warming early Mars with \(\text{ CO }_2\) and \(\text{ H }_2\). Nat Geosci 7:59–63ADSGoogle Scholar
  319. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–73ADSGoogle Scholar
  320. Rasool SI, de Bergh C (1970) The runaway greenhouse effect and the accumulation of \(\text{ CO }_2\) in the atmosphere of Venus. Nature 226:1037–1039ADSGoogle Scholar
  321. Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17ADSGoogle Scholar
  322. Raymond SN, Quinn T, Lunine JI (2005) Terrestrial planet formation in disks with varying surface density profiles. Astrophys J 632:670–676ADSGoogle Scholar
  323. Raymond SN, Quinn T, Lunine JI (2006) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183:265–282ADSGoogle Scholar
  324. Raymond SN, Quinn T, Lunine JI (2007) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84ADSGoogle Scholar
  325. Raymond SN, O’Brien DP, Morbidelli A, Kaib NA (2009) Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203:644–662ADSGoogle Scholar
  326. Raymond SN, Morbidelli A (2014) The grand tack model: a critical review, complex planetary systems. In: Proc Int Astron Union, IAU Symposium, vol 310, pp 194–203Google Scholar
  327. Raymond SN, Kokubo E, Morbidelli A, Morishima R, Walsh KJ (2014) Terrestrial planet formation at home and abroad. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University Arizona Press, Tucson, pp 595–618Google Scholar
  328. Reese CC, Solomatov VS (2006) Fluid dynamics of local Martian magma oceans. Icarus 184:102–120ADSGoogle Scholar
  329. Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water? Science 294:578–581ADSGoogle Scholar
  330. Reinhard CT, Planavsky NJ (2011) Mineralogical constraints on Precambrian \(\text{ p }\text{ CO }_2\). Nature 474:E4–5Google Scholar
  331. Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres: I. High-energy irradiances (1–1700 Å). Astrophys J 622:680ADSGoogle Scholar
  332. Robbins SJ, Hynek BM, Lillis RJ, Bottke WF (2013) Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225:173–184ADSGoogle Scholar
  333. Roberson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9:313–20Google Scholar
  334. Rodriguez JAP, Fairén AG, Tanaka KL, Zarroca M, Linares R, Platz T, Komatsu G, Miyamoto H, Kargel JS, Yan J, Gulick V, Higuchi K, Baker VR, Glines N (2015) Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Nat Sci Rep 6:25106ADSGoogle Scholar
  335. Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. Astrophys J 801:41ADSGoogle Scholar
  336. Ronov AB, Yaroshevskiy AA (1967) Chemical structure of the Earth’s crust. Geochemistry 11:1041–1066Google Scholar
  337. Rosenbauer EN, Head JW III (2015) Late Noachian fluvial erosionon Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet Space Sci 117:429–435ADSGoogle Scholar
  338. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland–indications of \(> 3700 \text{ Ma }\) oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244ADSGoogle Scholar
  339. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010a) No climate paradox under the faint young Sun. Nature 464:744–747ADSGoogle Scholar
  340. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010b) Rosing, bird, sleep & bjerrum reply. Nature 474:E1Google Scholar
  341. Rubie DC, Nimmo F, Melosh HJ (2015) Formation of the Earth’s core. In: Schubert G (ed ) Treatise on geophysics, vol 9, pp 43–79Google Scholar
  342. Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378:603–605ADSGoogle Scholar
  343. Sackmann IJ, Boothroyd AI (2003) Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophys J 583:1024–1039ADSGoogle Scholar
  344. Salvador A, Massol H, Davaille A, Marcq E, Sarda P, Chassefiére E (2017) The relative influence of \(\text{ H }_2\text{ O }\) and \(\text{ CO }_2\) on the primitive surface conditions and evolution of rocky planets. J Geophys Res Planets 122:1458–1486ADSGoogle Scholar
  345. Sasaki S, Nakazawa K (1988) Origin of isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial \(\text{ H }_2\) and He atmosphere. Earth Planet Sci Lett 89:323–334ADSGoogle Scholar
  346. Sasaki S, Nakazawa K (1989) did a primary solar-type atmosphere exist around the proto-Earth? Icarus 85:21–42ADSGoogle Scholar
  347. Safronov VS (1969) Evolution of the protoplanetary cloud and formation of the Earth and the planets. Akad Nauk SSSR Moscow, English translation, NASA TTF-667, 1972Google Scholar
  348. Safronov VS (1972) Evolution of the protoplanetary cloud and formation of the Earth and planets. In: Safronov VS (eds). Translated from Russian. Israel Program for Scientific Translations, Keter Publishing House, JerusalemGoogle Scholar
  349. Schaefer L, Fegley B (2010) Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208:438–448ADSGoogle Scholar
  350. Sheldon (2006) Precambrian paleosols and atmospheric \(\text{ CO }_2\) levels. Precambrian Res 147:148–155Google Scholar
  351. Scherf M, Khodachenko ML, Blokhina M, Johnstone C, Alexeev I, Belenkaya E, Tarduno JA, Kulikov Yu N, Tu L, Lichtenegger HIM, Güdel M, Lammer H (2018) On the Earth’s paleo-magnetosphere the late Hadean eon and possible implications for the ancient terrestrial atmosphere. Earth Planet Sci Lett (submitted)Google Scholar
  352. Schlesinger WH (1997) Biogeochemical cycles. Biogeochemistry. Academy Press, TokyoGoogle Scholar
  353. Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG (2014) Dehydration melting at the top of the lower mantle. Science 344:165–1268Google Scholar
  354. Segura TL, Toon OB, Colaprete A, Zahnle K (2002) Environment effects of large impacts on Mars. Science 298:1977–1980ADSGoogle Scholar
  355. Segura TL, Toon OB, Colaprete A (2008) Modeling the environmental effects of moderate-sized impacts on MarsGoogle Scholar
  356. Segura TL, Mc Kay CP, Toon OB (2012) An impact-induced, stable climate on Mars. Icarus 220:144–148ADSGoogle Scholar
  357. Sekiya M, Nakazawa K, Hayashi C (1980a) Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet Sci Lett 50:197–201ADSGoogle Scholar
  358. Sekiya M, Nakazawa K, Hayashi C (1980b) dissipation of the primordial terrestrial atmosphere due to irradiation of the solar EUV. Prog Theoret Phys 64:1968–1985ADSGoogle Scholar
  359. Shirey SB, Kamber BS, Whitehouse MJ, Mueller PA, Basu AR (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonic subduction. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth?. Geological Society of America, Boulder, pp 1–29Google Scholar
  360. Skumanich A (1972) Time scales for CA ii emission decay, rotational braking, and lithium depletion. Astrophys J 171:565ADSGoogle Scholar
  361. Sleep NH (2010) The Hadean-Archean environment. Cold Spring Harb Perspect Biol 2(6):a002527Google Scholar
  362. Sleep NH, Zahnle K (1991) Carbon dioxide cycling and implecations for climate on ancient Earth. J Geophys Res 106:1373–1399ADSGoogle Scholar
  363. Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106:1373–1400ADSGoogle Scholar
  364. Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early earth. Nature 342:139–142ADSGoogle Scholar
  365. Sleep NF, Zahnle KJ, Lupu RE (2014) Terrestrial aftermath of the Moon-forming impact. Phil Trans R Soc A 372:20130172ADSGoogle Scholar
  366. Soderblom DR, Stauffer JR, MacGregor KB, Jones BF (1993) The evolution of angular momentum among zero-age main-sequence solar-type stars. Astrophs J 409:624–634ADSGoogle Scholar
  367. Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University Arizona Press, Tucson, pp 323–338Google Scholar
  368. Solomatov VS (2004) Initiation of subduction by small-scale convection. J Geophys Res 109:B01412ADSGoogle Scholar
  369. Som SM, Buick R, Hagadorn JW, Blake TS, Perreault JM, Harnmeijer JP, Catling DC (2016) Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat Geosci 484:359–362Google Scholar
  370. Srinivasan B (2016) Barites—anomalous xenon from spallation and neutron-induced reactions. Nat Geosci 31:129–141Google Scholar
  371. Stanley BD, Hirschmann MM, Withers AC (2011) \(\text{ CO }_2\) solubility in Martian basalts and Martian atmospheric evolution. Geochim Cosmochim Acta 75:5987–6003ADSGoogle Scholar
  372. Stauffer JR, Caillault J-P, Gagné M, Prosser CF, Hartmann LW (1994) A deep imaging survey of the Pleiades with ROSAT. Astrophys J Suppl 91:625–657ADSGoogle Scholar
  373. Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–60ADSGoogle Scholar
  374. Stevenson DJ (1983a) Anomalous bulk viscosity of two-phase fluids and implications for planetary interiors. J Geophys Res 88:2445–2455ADSGoogle Scholar
  375. Stevenson DJ (1983b) The nature of the Earth prior to the oldest known rock record: the Hadean Earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin, and evolution. Princeton University Press, Princeton, pp 32–40Google Scholar
  376. Stevenson DJ (1990) Fluid dynamics of core formation. In: Stevenson, D.J. Fluid dynamics of core formation. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, pp 231–249Google Scholar
  377. Stökl A, Dorfi E, Lammer H (2015) Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron Astrophys 576:87ADSGoogle Scholar
  378. Stökl A, Dorfi EA, Johnstone CP, Lammer H (2016) Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and \(5\, M_{\oplus }\) in the habitable zone. Astrophys J 825:86ADSGoogle Scholar
  379. Strom RG, Schaber GG, Dawson DD (1994) The global resurfacing of Venus. J Geophys Res 99:10899–10926ADSGoogle Scholar
  380. Stüeken EE, Buick R, Schauer AJ (2015) Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet Sci Lett 411:1–10ADSGoogle Scholar
  381. Stüeken EE, Kipp MA, Koehler MC, Schwieterman EW, Johnson B, Buick R (2016a) Modeling \(\text{ p }\text{ N }_2\) through geological time: Implications for planetary climates and atmospheric biosignatures. Astrobiology 16:949–963ADSGoogle Scholar
  382. Stüeken EE, Kipp MA, Koehler MC, Buick R (2016b) The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci Rev 160:220–39Google Scholar
  383. Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 372:375Google Scholar
  384. Tashiro T (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518ADSGoogle Scholar
  385. Tarduno JA, Blackman EG, Mamajek EE (2014) Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys Earth Planet Int 233:68–87ADSGoogle Scholar
  386. Tarduno JA, Cottrell RT, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349:521–524ADSGoogle Scholar
  387. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology 144:2377–2406Google Scholar
  388. Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017ADSGoogle Scholar
  389. Tian F, Kasting JF, Liu H-L, Roble RG (2008a) Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J Geophys Res 113:E05008ADSGoogle Scholar
  390. Tian F, Solomon SC, Qian L, Lei J, Roble RG (2008b) Hydrodynamic planetary thermosphere model: 2. Coupling og an electron transport/energy deposition model. J Geophys Res 113:E07005ADSGoogle Scholar
  391. Tian F, Kasting JF, Solomon SC (2009) Thermal escape of carbon from the early Martian atmosphere. Geophys Res Lett 36:L02205ADSGoogle Scholar
  392. Tian F, Kasting JF, Zahnle K (2011) Revisiting HCN formation in Earth’s early atmosphere. Earth Planet Sci Lett 308:417–23ADSGoogle Scholar
  393. Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Rev 98:5319–5333ADSGoogle Scholar
  394. Tosi N, Plesa A-C, Breuer D (2013) Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J Geophys Res Planets 118:1512–1528ADSGoogle Scholar
  395. Tsiganis K, Gomes R, Morbidelli A, Levision HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461ADSGoogle Scholar
  396. Tu L, Johnstone CP, Güdel M, Lammer H (2015) The extreme ultraviolet and x-ray Sun in time: High-energy evolutionary tracks of a solar-like star. Astron Astrophys 577:L3ADSGoogle Scholar
  397. Tucker JM, Mukhopadhyay S (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. EPSL 393:254–265ADSGoogle Scholar
  398. Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New YorkGoogle Scholar
  399. Turner G, Burgess R, Bannon M (1990) Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature 344:653–655ADSGoogle Scholar
  400. Turner S, Rushmer T, Reagan M, Moyen J-F (2014) Heading down early on? Start of subduction on early Earth. Geology 42:139–42ADSGoogle Scholar
  401. Tyburczy JA, Frisch B, Ahrens TJ (1986) Shock-induced volatile loss from a carbonaceous chondrite: Implications for planetary accretion. Earth Planet Sci Lett 80:201–207ADSGoogle Scholar
  402. Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the Earth, the Moon, and Mars. PNAS 41:127–44ADSGoogle Scholar
  403. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–355ADSGoogle Scholar
  404. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion D (2007) Review: secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38ADSGoogle Scholar
  405. Van Kranendonk MJ (2010) Two types of Archean continental crust: plume and plate tectonics on early Earth. Am J Sci 310:1187–1209ADSGoogle Scholar
  406. Van Kranendonk MJ (2011) Onset of plate tectonics. Science 333:413–414ADSGoogle Scholar
  407. Von Paris P, Rauer H, Lee Grenfell J, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth \(\text{ CO }_2\) reconsidered. Planet Space Sci 56:1244–1259ADSGoogle Scholar
  408. Wahl SM, Hubbard WW, Militzer B, Guillot T, Miguel Y, Movshovitz N, Kaspi Y, Helled R, Reese D, Galanti E, Levin S, Connerney JE, Bolton SJ (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659ADSGoogle Scholar
  409. Walker D, Longhi J, Hays J F (1975) Differentiation of a very thick magma body and implications for the source region of mare basalts. In: Lunar Planet Inst, Proc Lunar Sci Conf, 6th Houston Texas March, pp 17–21, 1103–1120Google Scholar
  410. Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life 16:117–127ADSGoogle Scholar
  411. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209ADSGoogle Scholar
  412. Walter FM (1981) On the coronae of rapidly rotating stars. II—A period-activity relation in G stars. Astrophys J 245:677–681ADSGoogle Scholar
  413. Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331ADSGoogle Scholar
  414. Watenphul A, Wunder B, Wirth R, Heinrich W (2010) Ammonium-bearing clinopyroxene: a potential nitrogen reservoir in the Earth’s mantle. Chem Geol 270:240–248ADSGoogle Scholar
  415. Watson AJ, Donahue TM, Walker JCG (1981) The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48:150–166ADSGoogle Scholar
  416. Weber EJ, Davis L Jr (1967) The angular momentum of the solar wind. Astrophys J 148:217–227ADSGoogle Scholar
  417. Wieler R (2016) Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data. Chemie der Erde 76:463–480ADSGoogle Scholar
  418. Wieler R, Heber VS (2003) Noble gas isotopes on the Moon. Space Sci Rev 106:197–211ADSGoogle Scholar
  419. Way MJ, Del Genio AD, Kiang NY, Sohl LE, Grinspoon DH, Aleinov I, Kelley M, Clune T (2016) Was Venus the first habitable world of our solar system? Geophys Res Lett 43:8376–8383ADSGoogle Scholar
  420. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116Google Scholar
  421. Wetherill GW (1980) Formation of the terrestrial planets. Annu Rev Astron Astrophys 18:77–113ADSGoogle Scholar
  422. Wetherill GW (1991) Occurrence of earth-like bodies in planetary systems. Science 253:535–538ADSGoogle Scholar
  423. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178ADSGoogle Scholar
  424. Wolf ET, Toon OB (2013) Hospitable Archean climates simulated by a general circulation model. Astrobiology 13:656–673ADSGoogle Scholar
  425. Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833ADSGoogle Scholar
  426. Wordsworth RD, Pierrehumbert RT (2013) Water loss from terrestrial planets with \(\text{ CO }_2\)-rich atmospheres. Astrophys J 778:154ADSGoogle Scholar
  427. Wordsworth RD, Pierrehumbert RT (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785(2):L20ADSGoogle Scholar
  428. Wordsworth RD (2016a) Atmospheric nitrogen evolution on Earth and Venus. Earth Planet Sci Lett 447:103–111ADSGoogle Scholar
  429. Wordsworth RD (2016b) The climate of early mars. Annual Rev Earth Planet Sci 44:1–31Google Scholar
  430. Wright NJ, Drake JJ, Mamajek EE, Henry GW (2011) The stellar-activity-rotation relationship and the evolution of stellar dynamos. Astrophys J 743:48ADSGoogle Scholar
  431. Yin A (2012) Structural analysis of the Valles Marineris fault zone: possible evidence for large-scale strike-slip faulting on Mars. Lithosphere 4:286–330ADSGoogle Scholar
  432. Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albaréde F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418(6901):949–952ADSGoogle Scholar
  433. Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88ADSGoogle Scholar
  434. Yu G, Jacobsen SB (2011) Fast accretion of the Earth with a late Moon-forming giant impact. PNAS 108:17604–17609ADSGoogle Scholar
  435. Zahnle KJ, Walker JCG (1982) The evolution of solar ultraviolet luminosity. Rev Geophys 20:280–292ADSGoogle Scholar
  436. Zahnle K, Kasting JF, Pollack JB (1986) Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84:502–527ADSGoogle Scholar
  437. Zahnle KJ (1986) Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J Geophys Res 91:2819–2834ADSGoogle Scholar
  438. Zahnle K, Pollack JB, Kasting JF (1990) Xenon fractionation in porous planetesimals. Geochim Cosmochim Acta 54:2577–2586ADSGoogle Scholar
  439. Zahnle KJ, Claire MW, Catling DC (2006) The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–283Google Scholar
  440. Zahnle K, Haberle RM, Catling DC, Kasting JF (2008) Photochemical instability of the ancient Martian atmosphere. J Geophys Res 113:E11004ADSGoogle Scholar
  441. Zahnle K, Freedman R, Catling D (2010) Is there methane on Mars? In: 41st Lunar Planet Sci Conf, March 1–5, 2010. The Woodlands, Texas, vol 1533, pp 2456Google Scholar
  442. Zahnle K J (2015) Xenon fractionation and Archean hydrogen escape. Lunar Planet Sci XLVI:1549 (abstract) Google Scholar
  443. Zerkle AL, Junium CK, Canfield DE, House CH (2008) Production of \(^{15}\text{ N }\)-depleted biomass during cyanobacterial \(\text{ N }_2\)-fixation at high Fe concentrations. J Geophys Res 113:G03014Google Scholar
  444. Zerkle AL, Mikhail S (2017) The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15:343–352Google Scholar
  445. Zerkle AL, Poulton SW, Newton RJ, Mettam C, Clair MW, Bekker A, Junium CK (2017) Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542:465–467ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Helmut Lammer
    • 1
  • Aubrey L. Zerkle
    • 2
  • Stefanie Gebauer
    • 3
  • Nicola Tosi
    • 4
    • 5
  • Lena Noack
    • 6
  • Manuel Scherf
    • 1
  • Elke Pilat-Lohinger
    • 7
  • Manuel Güdel
    • 7
  • John Lee Grenfell
    • 3
  • Mareike Godolt
    • 5
  • Athanasia Nikolaou
    • 4
    • 5
  1. 1.Space Research Institute, Austrian Academy of SciencesGrazAustria
  2. 2.School of Earth and Environmental Sciences and Centre for Exoplanet ScienceUniversity of St. AndrewsSt. AndrewsUK
  3. 3.Department of Extrasolar Planets and AtmospheresGerman Aerospace Center, Institute of Planetary ResearchBerlinGermany
  4. 4.Department of Planetary PhysicsGerman Aerospace Center, Institute of Planetary ResearchBerlinGermany
  5. 5.Department of Astronomy and AstrophysicsBerlin Institute of TechnologyBerlinGermany
  6. 6.Department of Earth SciencesFreie Universität BerlinBerlinGermany
  7. 7.Department of AstrophysicsUniversity of ViennaViennaAustria

Personalised recommendations