Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Major achievements of the Rosetta mission in connection with the origin of the solar system

Abstract

Comets have been studied from a long time and are believed to preserve pristine materials, so they are fundamental to understand the origin of the solar system and life. Starting in the early 1990s, ESA decided to have a more risky and fantastic mission to a comet. As Planetary Cornerstone mission of the ESA Horizon 2000 program, the Rosetta mission was selected with the aim of realizing two asteroid fly-bys, a rendezvous with a comet to deliver a surface science package and to hover around the comet from 4 AU inbound up to perihelion and outbound back to 3.7 AU. The mission was successfully launched on March 2, 2004 with Ariane V that started its 10-year journey toward comet 67P/Churyumov–Gerasimenko. After several planetary gravity assists, Rosetta flew by two asteroids—on September 5, 2008 (Steins) and on July 10, 2010 (Lutetia), respectively, and performed the comet orbit insertion maneuver on August 6, 2014. The onboard instruments characterized the nucleus orbiting the comet at altitudes down to few kilometers. On November 12, 2014, the lander Philae was delivered realizing the first landing ever on a comet surface. Although the exploration of the comet was planned up to the end of 2015, the mission duration was extended for nine more months than the nominal one, to follow the comet on its outbound orbit. To terminate the mission, following a series of very low orbits, a controlled impact of Rosetta spacecraft with the comet was realized on September 30, 2016. The scientific objectives of the mission have been largely achieved. The challenging mission provided the science community with an enormous quantity of data of extraordinary scientific value. In this paper, a detailed description of the mission and the highlights of the obtained scientific results on the exploration of an extraordinary world are presented. The paper also includes lessons learned and directions for the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

References

  1. Agarwal J, A’Hearn MF, Vincent J-B et al (2016) Acceleration of individual decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. MNRAS 462:S578–S588

  2. Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:a0440

  3. Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals amino acid and phosphorus in the coma of comet 67P/Churyumov–Gerasimenko. Sci Adv 2(5):e1600285

  4. André M, Odelstad M, Graham DB et al (2017) Lower hybrid waves at comet 67P/Churyumov–Gerasimenko. MNRAS 469:S29–S38

  5. Auger A-T, Groussin O, Jorda L et al (2015) Geomorphology of the Imhotep region on comet 67P/Churyumov–Gerasimenko from OSIRIS observations. A&A 583:A35

  6. Auster H-U, Apathy I, Berghofer G et al (2007) ROMAP: Rosetta magnetometer and plasma monitor. Sp Sci Rev 128:221–240

  7. Auster H-U, Apathy I, Berghofer G et al (2015) The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science 349:aaa5102

  8. Balsiger H, Altwegg K, Bochsler P et al (2007) Rosina Rosetta orbiter spectrometer for ion and neutral analysis. Sp Sci Rev 128:745–801

  9. Bar-Nun, A, Barucci, MA, Bussoletti, E et al (1993) ROSETTA Comet Rendez Vous Mission. ESA SCI(93)7, September 1993

  10. Barucci MA, Fulchignoni M, Fornasier S et al (2005) Asteroid target selection for the new Rosetta mission baseline 21 Lutetia and 2867 Steins. A&A 430:313–317

  11. Barucci MA, Belskaya IN, Fornasier S et al (2012) Overview of Lutetia’s surface composition. Planet Sp Sci 66:23–30

  12. Barucci MA, Filacchoni G, Fornasier S et al (2016) Detection of exposed H\({_{2}}\)O ice on the nucleus of comet 67P/Churyumov- Gerasimenko. Astron Astrophys 595:A102

  13. Besse S, Lamy P, Jorda P et al (2012) Identification and physical properties of craters on asteroid (2867) Steins. Icarus 221:1119–1129

  14. Besse S, Kueers M, Barnouin OS et al (2014) Lutetia’s lineaments. Planet Sp Sci 101:186–195

  15. Bibring J-P, Lamy P, Langevin Y et al (2007) Civa. Sp Sci Rev 128:397–412

  16. Bibring J-P, Langevin Y, Carter J et al (2015) 67P/Churyumov–Gerasimenko surface properties as derived from CIVA panoramic images. Science 349:aaa0671

  17. Biele J, Ulamec S, Maibaum M et al (2015) The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349:aaa9816

  18. Bieler A, Altwegg K, Balsiger H et al (2015a) Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov–Gerasimenko. A&A 583:A7

  19. Bieler A, Altwegg K, Balsiger H et al (2015b) Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526(7575):678–681

  20. Biver N, Hofstadter M, Gulkis S et al (2015) Distribution of water around the nucleus of comet 67P/Churyumov–Gerasimenko at 34 AU from the Sun as seen by the MIRO instrument on Rosetta. A&A 583:A3

  21. Bockelée-Morvan D, Debout V, Erard S et al (2015) First observations of \(\text{ H }_{2}\text{ O }\) and \(\text{ CO }_{2}\) vapor in comet 67P/Churyumov–Gerasimenko made by VIRTIS onboard Rosetta. A&A 583:A6

  22. Bockelée-Morvan D, Crovisier J, Erard S et al (2016) Evolution of \(\text{ CO }_{2}\), \(\text{ CH }_{4}\), and OCS abundances relative to \(\text{ H }_{2}\text{ O }\) in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations. MNRAS 462:S170–S183

  23. Boesswetter A, Auster U, Richter I et al (2009) Rosetta swing-by at Mars—an analysis of the RPMAP measurements in comparison with results af a 3-D mulyi-ion hybrid simulation and MEX/ASPERA_3 data. Ann Geophys 27:2383–2398

  24. Broiles TW, Burch JL, Clark G et al (2015) Rosetta observations of solar wind interaction with the comet 67P/Churyumov–Gerasimenko. A&A 583(A21):7

  25. Broiles TW, Burch JL, Chae K et al (2016) Statistical analysis of suprathermal electron drivers at 67P/Churyumov–Gerasimenko. MNRAS 462:S312–S322

  26. Budnik F, Morley T (2007) Rosetta navigation at its Mars swing-by. In: Procceedings of 20th international symposium on space flight dynamics, Annapolis

  27. Burch JL, Goldstein R, Cravens TE et al (2007) RPC-IES: the ion and electron sensor of the Rosetta plasma consortium. Sp Sci Rev 128:697–712

  28. Capaccioni F, Coradini A, Filacchioni G et al (2015) The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science 337:a0628

  29. Carr C, Cupido E, Lee CGY et al (2007) RPC: the Rosetta plasma consortium. Sp Sci Rev 128:629–647

  30. Cawley SWH (1987) ICE observation of comet Giacobini–Zinner. Philos Trans R Soc Lond A323:405–420

  31. Clark G, Broiles TW, Burch JL et al (2015) Suprathermal electron environment of comet 67P/Churyumov–Gerasimenko: observations from the Rosetta Ion and electron sensor. A&A 583:A24 6

  32. Colangeli L, Lopez-Moreno JJ, Palumbo P et al (2007) The grain impact analyser and dust accumulator (GIADA) experiment for the Rosetta mission: design, performances and first results. Sp Sci Rev 128:803–821

  33. Coradini A, Capaccioni F, Drossart P et al (2007) Virtis: an imaging spectrometer for the Rosetta mission. Sp Sci Rev 128:529–559

  34. Coradini A, Grassi D, Capaccioni F et al (2010) Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft. JGR 115:E04004

  35. Coradini A, Capaccioni F, Erard S (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334:492–494

  36. Dalla Corte V, Rotundi A, Fulle M et al (2016) 67P/C-G inner coma dust properties from 22 au inbound to 20 au outbound to the Sun. MNRAS 462:S210–S219

  37. Davidsson BJR, Sierks H, Güttler C et al (2016) The primordial nucleus of comet 67P/Churyumov–Gerasimenko. A&A 592:A63 30

  38. Deshaprya P, Barucci MA, Fornasier S et al (2016) Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. MNRAS 462:274

  39. De Sanctis MC, Capaccioni F, Ciarniello M et al (2015) The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature 525:500–503

  40. El-Maarry MR, Thomas N, Giacomini L et al (2015) Regional surface morphology of comet 67P/Churyumov–Gerasimenko from Rosetta/OSIRIS images. A&A 583:A26

  41. El-Maarry MR, Thomas N, Gracia-Berná A et al (2016) Regional surface morphology of comet 67P/Churyumov–Gerasimenko from Rosetta/OSIRIS images: the southern hemisphere. A&A 593:A110

  42. El-Maarry MR, Groussin O, Thomas N et al (2017) Surface changes on comet 67P/Churyumov–Gerasimenko suggest a more active past. Science 355(6332):1392–1395

  43. Ercoli-Finzi A, Bernelli Zazzera F, Dainese C (2007) SDT—how to sample a comet. Sp Sci Rev 128:281–299

  44. Eriksson AI, Boström R, Gill R et al (2007) RPC-LAP: the Rosetta Langmuir probe instrument. Sp Sci Rev 128:729–744

  45. Feldman PD, Steffl AJ, Parker JW et al (2011) Rosetta–Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214:394–399

  46. Feldman PD, A’Hearn MF, Bertaux J-L et al (2015) Measurements of the near-nucleus coma of comet 67P/Churyumov–Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta. A&A 583:A8

  47. Filacchione G, de Sanctis MC, Capaccioni F et al (2016a) Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature 529:368–372

  48. Filacchione G, Raponi A, Capaccioni F et al (2016b) Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Science 354:1563–1566

  49. Fink U, Doose L, Rinaldi G et al (2016) Investigation into the disparate origin of \(\text{ CO }_{2}\) and \(\text{ H }_{2}\text{ O }\) outgassing for Comet 67/P. Icarus 277:78–97

  50. Fornasier S, Hasselmann PH, Barucci MA et al (2015) Spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. A&A 583:A30

  51. Fornasier S, Mottola S, Keller HU et al (2016) Rosetta’s comet 67P sheds its dusty mantle to reveal its icy nature. Science 345:1566–1570

  52. Fornasier S, Feller C, Lee J-C et al (2017) The highly active Anhur-Bes regions in the 67P Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. MNRAS 469:S93–S107

  53. Fougere N, Altwegg K, Berthelier J-J et al (2016) Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov–Gerasimenko. MNRAS 462:S156–S163

  54. Fray N, Bardyn A, Cottin H et al (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538:72–74

  55. Fulle M, Della Corte V, Rotondi A et al (2015) Density and charge of pristine fluffy particles from comet 67P/Churyumov–Gerasimenko. Astrophys J Lett 802:L2 5

  56. Fulle M, Altobelli A, Buratti B et al (2016a) Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view. MNRAS 462:S2–S8

  57. Fulle M, Della Corte V, Rotondi A et al (2016b) Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. MNRAS 462:S132–S137

  58. Fulle M, Blumm J (2017) Fractal dust constrains the collisional history of comets. MNRAS 469:S39–S44

  59. Galand M, Héritier KL, Odelstad E et al (2016) Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun. MNRAS 462:S331–S351

  60. Glassmeier K-H, Richter I, Diedrich A et al (2007) RPC-MAG: the fluxgate magnetometer in the ROSETTA plasma consortium. Sp Sci Rev 128:649–670

  61. Goesmann F, Rosenbauer H, Roll R et al (2007) Cosac, The cometary sampling and composition experiment on Philae. Sp Sci Rev 128:257–280

  62. Goesmann F, Rosenbauer H, Bredehöft JH et al (2015) Organic compounds on comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689

  63. Goetz C, Koenders C, Hansen KC et al (2016) Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko. MNRAS 462:S459–S467

  64. Groussin O, Sierks H, Barbieri C et al (2015) Temporal morphological changes in the Imhotep region of comet 67P/Churyumov–Gerasimenko. A&A 583:36

  65. Gulkis S, Frerking M, Crovisier J et al (2007) MIRO: microwave instrument for Rosetta orbiter. Sp Sci Rev 128:561–597

  66. Gulkis S, Allen M, von Allmen P et al (2015) Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko. Science 347:aaa0709

  67. Grün E, Agarwal J, Altobelli N et al (2016) The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. MNRAS 462:S220–S234

  68. Hansen KC, Altwegg K, Berthelier J-J et al (2016) Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical model and a multi-instrument study. MNRAS 462:S491–S506

  69. Hassig M, Altwegg K, Balsiger H et al (2015) Time variability and heterogeneity in the coma of 67P/Churyumov–Gerasimenko. Science 347:aaa0276

  70. Heinisch P, Auster HU, Richter I et al (2017) Joint two-point observations of LF-waves at 67P/Churyumov–Gerasimenko. MNRAS 469:S68–S72

  71. Hirabayashi M, Scheeres DJ, Chesley RS et al (2016) Fission and reconfiguration bilobate comets as revealed by 67P/Churyumov–Gerasimenko. Nature 534:352–355

  72. Jorda L, Gaskell RW, Capanna C et al (2016) The global shape, density and rotation of comet 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus 277:257–278

  73. Jutzi M, Michel P, Benz W (2010) A large crater as a probe of the internal structure of the E-type asteroid Steins. A&A 509:L2–L5

  74. Jutzi M, Asphaug E (2015) The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348(6241):1355–1358

  75. Keller HU, Barbieri C, Lamy P et al (2007) OSIRIS: the scientific camera system onboard Rosetta. Sp Sci Rev 128:433–506

  76. Keller HU, Barbieri C, Koschny D et al (2010) E-type asteroid (2867) steins as imaged by OSIRIS on board Rosetta. Science 327:190

  77. Kissel J, Altwegg K, Clark BC et al (2007) Cosima high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta. Sp Sci Rev 128:823–867

  78. Klingelhöfer G, Brückner J, D’Uston C et al (2007) The Rosetta alpha particle X-ray spectrometer (APXS). Sp Sci Rev 128:383–396

  79. Koenders C, Goetz C, Richter I et al (2016) Magnetic field pile-up and draping at intermediately active comets: results from comet 67P/Churyumov–Gerasimenko at 20 AU. MNRAS 462:S235–S241

  80. Kofman W, Herique A, Goutail J-P et al (2007) The comet nucleus sounding experiment by radiowave transmission (CONSERT): a short description of the instrument and of the commissioning stages. Sp Sci Rev 128:413–432

  81. Kofman W, Herique A, Barbin Y et al (2015) Properties of the 67P/Churyumov–Gerasimenko interior revealed by CONSERT radar. Science 349:aaa0639

  82. Küers M, Moissl R, Vincent J-B et al (2012) Boulders on Lutetia. Planet Sp Sci 66:71–78

  83. Lee S, von Allmen P, Allen M et al (2015) Spatial and diurnal variation of water outgassing on comet 67P/Churyumov–Gerasimenko observed from Rosetta/MIRO in August 2014. A&A 583:A5

  84. Le Roy L, Altwegg K, Balsiger H et al (2015) Inventory of the volatiles on comet 67P/Churyumov–Gerasimenko from Rosetta/ROSINA. A&A 583:A1

  85. Lethuillier A, Le Gall A, Hamelin M et al (2016) Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov–Gerasimenko as constrained by the permittivity probe SESAME-/Philae/Rosetta. A&A 591(idA32):17

  86. Leyrat C, Fornasier S, Barucci MA et al (2010) Search for Steins’ surface inhomogeneities from OSIRIS Rosetta images. Planet Sp Sci 58:1097–1106

  87. Luspay-Kuti A, Hässig M, Fuselier SA et al (2015) Composition-dependent outgassing of comet 67P/Churyumov–Gerasimenko from ROSINA/DFMS implications for nucleus heterogeneity? A&A 583:A4

  88. Mall U, Altwegg K, Balsiger H et al (2016) High-time resolution in-situ investigation of major cometary volatiles around 67P/C-G at 31–23 AU measured with ROSINA-RTOF. Astrophys J 819:126 9

  89. Mannel T, Bentley MS, Schmied R et al (2016) Fractal cometary dust—a window into early solar system. MNRAS 462:S304–S311

  90. Marchi S, Massironi M, Vincent JB et al (2012) The cratering history of asteroid (21) Lutetia. Planet Sp Sci 66:87–95

  91. Marchi S, Chapman CR, Barnouin OS et al (2015) Cratering on asteroids. In: Michel P et al (eds) Asteroid IV. Univ of Arizona Press, Arizona, pp 725–744

  92. Massironi M, Simioni E, Marzari F et al (2015) Two independent and primitive envelopes of the bilobate nucleus of comet. 67P Nat 526:402–405

  93. Morbidelli A, Rickman H (2015) Comets as collisional fragments of a primordial planetesimals disk. A&A 583:43 9

  94. Morley T, Budnik F (2006) Rosetta Navigation at its first Earth Swing-by. In: Proocedings of the 19th international symposium on space flight dynamics, Kanazawa, Japan

  95. Morley T, Budnik F (2009) Rosetta navigation for the fly-by of asteroid 2867 steins. In: Proceedings of the 21st international symposium on space flight dynamics, Toulouse

  96. Morley T, Budnik F, Croon M et al (2012) Rosetta navigation for the fly-by of asteroid (21) Lutetia. In: Proceedings of the 25th international symposium on space flight dynamics, Pasadena

  97. Mottola S, Arnold G, Grothues H-G (2007) The Rolis experiment on the Rosetta lander. Sp Sci Rev 128:241–255

  98. Mottola S, Arnold G, Grothues H-G et al (2015) The structure of the regolith on 67P/Churyumov–Gerasimenko from ROLIS descent imaging. Science 349:aaa0232

  99. Nakashima D, Ushikubo T, Kita NT et al (2015) Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al-Mg chronology of plagioclase. Earth Planet Sci Lett 410:54–61

  100. Newburn, RL Jr (1986) Halley Armada report. In: Prooceedings of the nineteenth annual electronics and aerospace systems conference, Washington, DC, Sept 8–10, 1986 (A87-40351 17-12) New York, Institute of Electrical and Electronics Engineers, Inc, 1986, p 165–173

  101. Nemeth Z, Burch J, Goetz C et al (2016) Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. MNRAS 462(Sul–1):S415–S421

  102. Nilsson H, Lundin R, Lundin K et al (2007) RPC-ICA: the ion composition analyzer of the Rosetta plasma consortium. Sp Sci Rev 128:671–695

  103. Nilsson H, Stenberg Wieser G, Behar E et al (2015) Evolution of the ion environment of comet 67P/Churyumov–Gerasimenko observations between 3.6 and 2.0 AU. A&A 583, A20, 8

  104. Pajola M, Lazzarin M, Bertini D et al (2012a) Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implicaions for its collisional capture. MNRAS 427:3230–3243

  105. Pajola M, Magrin S, Lazzarin M et al (2012b) Rosetta-Mars fly-by, February 25, 2007. Mem SAIt Suppl 20:105–113

  106. Pajola M, Lazzarin M, Bertini I et al (2014) New hints on Phobos collisional capture origin from Rosetta-OSIRIS observation. Mem SAIt Suppl 26:75–80

  107. Pajola M, Vincent J-B, Güttler C et al (2015) Size-frequency distribution of boulders \(\ge \)7 m on comet 67P/Churyumov–Gerasimenko. A&A 583:A37

  108. Pajola M, Oklay N, La Forgia F et al (2016a) Aswan site on comet 67P/Churyumov–Gerasimenko: morphology, boulder evolution and spectrophotometry. A&A 592:A69 17

  109. Pajola M, Lucchetti A, Vincent J-B et al (2016b) The southern hemisphere of 67P/ Churyumov–Gerasimenko: analysis of the preperihelion size/frequency distribution of boulders \(>\) 7m. A&A 592:L2 5

  110. Pajola M, Hofner S, Vincent JB et al (2017) The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat Astron 1:0092

  111. Pätzold M, Häusler B, Aksnes K et al (2007) Rosetta radio science investigations (RSI). Sp Sci Rev 128:599–627

  112. Pätzold M, Andert TP, Asmar SW et al (2011) Asteroid 21 Lutetia: low mass, high density. Science 334:491–492

  113. Patzold M, Andert T, Hahn M et al (2016) A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature 530(7588):63–65

  114. Perna D, Fulchignoni M, Barucci MA et al (2017) Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/ Churyumov–Gerasimenko. A&A 600:A115 9

  115. Pommerol A, Thomas N, El-Maarry MR et al (2015) OSIRIS observations of meter-sized exposures of H20 ice at the surface of 67/Churyumov–Gerasimenko and interpretation using laboratory experiments. A&A 583:A25 16

  116. Poulet F, Lucchetti A, Bibring J-P et al (2016) Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov–Gerasimenko. MNRAS 462(Supplement 1):S23–S32

  117. Quirico E, Moroz LV, Schmitt B et al (2016) Refractory and semi-volatile organics at the surface of comet 67P/Churyumov–Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272:32–47

  118. Rickman H, Marchi S, A’Hearn MF et al (2015) Comet 67P/Churyumov–Gerasimenko: constraints on its origin from Osiris observations. A&A 583:A44 8

  119. Riedler W, Torkar K, Jeszenszky H et al (2007) MIDAS: the micro-imaging dust analysis system for the Rosetta mission. Sp Sci Rev 128:869–904

  120. Rivkin AS, Clark BE, Ockert-Bell M et al (2011) Observations of 21 Lutetia in the 2–4 micron region with the NASA IRTF. Icarus 216:62–68

  121. Rotundi A, Sierks H, Della Corte V et al (2015) Dust measurements in the coma of comet 67/P Churiumov–Gerasimenko inbound to the Sun. Science 347(6220):aaa3905 1–6

  122. Rubin M, Altwegg K, Balsiger H et al (2015) Moleular nitrogen in comet 67P/Churyumov–Gerasimenko indicates a low formation temperature. Science 348:232–235

  123. Schröder S, Mottola G, Arnold H-G et al (2017) Close-up images of the final Philae landing site on comet 67P/Churyumov–Gerasimenko acquired by the ROLIS camera. Icarus 285:263–274

  124. Seidensticker KJ, Möhlmann D, Apathy I et al (2007) Sesame—an experiment of the Rosetta Lander Philae: objectives and general design. Sp Sci Rev 128:301–337

  125. Sierks H, Lamy PL, Barbieri C (2011) Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334:487–490

  126. Sierks H, Barbieri C, Lamy PL et al (2015) On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347:1044

  127. Spohn T, Seiferlin K, Hagermann A et al (2007) Mupus a thermal and mechanical properties probe for the Rosetta Lander Philae. Sp Sci Rev 128:339–362

  128. Spohn T, Knollenberg J, Ball AJ et al (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov–Gerasimenko. Science 349:aaa0464

  129. Stern SA, Slater DC, Scherrer J et al (2007) Alice: the Rosetta ultraviolet imaging spectrograph. Sp Sci Rev 128:507–527

  130. Stern SA, Parker JW, Feldman PD et al (2011) Ultraviolet discoveries at asteroid (21) Lutetia by Rosetta Alice ultraviolet spectrometer. Astron J 141:199–202

  131. Thomas N, Barbieri C, Keller HU et al (2012) The geomorphology of (21) Lutetia: results from the OSIRIS imaging system on board ESA’s Rosetta spacecraft. Planet Sp Sci 66:96–124

  132. Thomas N, Davidsson BJR, El-Maarry MR et al (2015a) Redistribution of particles across the nucleus of comet 67P/Churyumov–Gerasimenko. A&A 583:A17

  133. Thomas N, Sierks H, Barbieri C et al (2015b) The morphological diversity of comet 67P/Churyumov–Gerasimenko. Science 347:a0440

  134. Trotignon JG, Lagoutte D, Michau JL et al (2005) Thermal plasma measurements in the earth plasmasphere by the mutual impedance probe onboard the Rosetta spacecraft. AGU fall meeting 2006, abstract #SM11B-0307

  135. Trotignon JG, Lagoutte D, Michau JL et al (2006) Plasma Density and Magnetic Strength Measured in the Earth Plasmasphere by the Mutual Impedance Probe Onboard the Rosetta. Spacecraft AGU fall meeting 2006, abstract #SM11B-0307

  136. Trotignon JG, Michau JL, Lagoutte D et al (2007) RPC-MIP: the mutual impedance probe of the Rosetta plasma consortium. Sp Sci Rev 128:713–728

  137. Veverka J, Belton M, Klaasen K et al (1994) Galileo’s encounter with 951 Gaspra: overview. Icarus 107:2–17

  138. Vincent J-B, Bodewits D, Besse S et al (2015) Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523:63

  139. Vincent J-B, A’Hearn MB, Lin Z-Y et al (2016a) Summer fireworks on comet 67P. MNRAS 462:S184–S194

  140. Vincent J-B, Oklay N, Pajol M et al (2016b) Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov–Gerasimenko. A&A 587:A14 15

  141. Wahlberg Jansson K, Johansen A (2014) Formation of pebble-pile planetesimals. A&A 570:A47 10

  142. Weiss BP, Elkins-Tanton LT, Barucci MA et al (2012) Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planet Sp Sci 66:137–146

  143. Wright IP, Pillinger CT (1998) Modulus-an experiment to measure precise stable isotope ratios on cometary materials. Adv Sp Res

  144. Wright IP, Barber SJ, Morgan GH et al (2007) Ptolemy an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Sp Sci Rev 128:363–381

  145. Wright IP, Sherida S, Barber SJ et al (2015) CHO-bearing organic compounds ar the surface of 67P/Churyumov–Gerasimenko revealed by Ptolemy. Science 349:aab0673

  146. Wurz P, Rubin M, Altwegg K et al (2015) Solar wind sputtering of dust on the surface of 67P/Churyumov–Gerasimenko. A&A 583:A22 9

  147. Yang L, Paulsson J, Simon Wedlund C et al (2016) Observations of high-plasma density region in the inner coma of 67P/Churyumov–Gerasimenko during early activity. MNRAS 462:S33–S44

  148. Zsom A, Ormel CW, Güttler C et al (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II Introducing the bouncing barrier. A&A A57(22)

Download references

Acknowledgements

The authors acknowledge the funding of the French national space agency Centre National d’Etudes Spatiales. We are grateful to all the Rosetta instrument teams and ESA Operations teams. The ESA Technical Directorate is also gratefully acknowledged.

Author information

Correspondence to M. A. Barucci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barucci, M.A., Fulchignoni, M. Major achievements of the Rosetta mission in connection with the origin of the solar system. Astron Astrophys Rev 25, 3 (2017). https://doi.org/10.1007/s00159-017-0103-8

Download citation

Keywords

  • Rosetta space mission
  • Asteroid 2867 Steins
  • Asteroid 21 Lutetia
  • Comet 67P/Churyumov–Gerasimenko