Accurate abundance analysis of late-type stars: advances in atomic physics

Review Article


The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.


Abundances Chemical composition Stellar atmospheres Atomic processes and interactions Atomic and molecular data 



Anstee, Barklem and O’Mara


Atomic Spectra Database (at NIST)


Model stellar atmosphere computer program by Kurucz


Atomic structure computer program by Badnell


B-Spline R-matrix


Convergent close coupling


Charge-coupled device


Atomic structure computer program by Hibbert


Double ElectroStatic Ion Ring ExpEriment


Derouich, Sahal-Bréchot and Barklem


European Southern Observatory


R-matrix computer program for external region problem by Burke and Noble


Hydrogen Bound and bound–free OPacity code


Hydrogen LINe OPacity computer code by Barklem and Piskunov


Hydrogen LINe PROFile computer code by Barklem and Piskunov


Interactive Data Language


Computer program for Kaulaky’s free-electron model by Barklem




Local thermodynamic equilibrium


Model stellar atmosphere computer program by Gustafsson et al.


Stellar spectrum synthesis computer program by Sneden


Momentum-Space WAVEFunction computer code by Barklem


National Institute of Standards and Technology (USA)


R-matrix computer program for internal region problem by Berrington et al.


R-matrix with pseudo-states


Stark broadening database


R-matrix computer program for external region problem by Berrington et al.


Atomic structure computer program by Eissner et al.


Opacity Project on-line atomic database


Vienna Atomic Line Database


Virtual Atomic and Molecular Data Centre



This review owes particularly large debts to two great scientists, Jim O’Mara and Andrey Belyaev. I have benefitted immeasurably from having long-term scientific collaborations with them. They have taught me not only physics and astrophysics, but been models of how to do science honestly and ethically. I have learnt from them the value of analytic understanding, often with Jim on the “back-of the-envelope”. They showed me by example how to work carefully on hard problems on long timescales. I am grateful to them both. I thank the many other collaborators who have contributed to work presented here. In particular, I wish to thank Stuart Anstee, Jenny Aspelund-Johansson, Juan Manuel Borrero, Remo Collet, Moncef Derouich, Alan Dickinson, Laine Falklund, Nicole Feautrier, Xavier Gadéa, Marie Guitou, Yeisson Osorio, Sylvie Sahal-Bréchot, and Annie Spielfiedel, for collaboration on various problems in atomic physics over the years. I thank also my many colleagues at Uppsala, past and present, for providing a stimulating and pleasant environment to work in. I thank Igor Bray for clarifications regarding the CCC method. This review and much of the work in it would not have been possible without financial support from the Royal Swedish Academy of Sciences, the Wenner-Gren Foundation, Goran Gustafssons Stiftelse and the Swedish Research Council. For much of this work I was a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. I am presently partially supported by the project grant “The New Milky Way” from the Knut and Alice Wallenberg Foundation.


  1. Adelman SA, Herschbach DR (1977) Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides. Mol Phys 33(3):793–809. doi: 10.1080/00268977700100731 ADSCrossRefGoogle Scholar
  2. Ali AW, Griem HR (1965) Theory of resonance broadening of spectral lines by atom–atom impacts. Phys Rev 140:1044–1049. doi: 10.1103/PhysRev.140.A1044 ADSCrossRefGoogle Scholar
  3. Ali AW, Griem HR (1966) Theory of resonance broadening of spectral lines by atom–atom impacts. Phys Rev 144:366. doi: 10.1103/PhysRev.144.366 ADSCrossRefGoogle Scholar
  4. Allard N, Kielkopf J (1982) The effect of neutral nonresonant collisions on atomic spectral lines. Rev Mod Phys 54:1103–1182. doi: 10.1103/RevModPhys.54.1103 ADSCrossRefGoogle Scholar
  5. Allard NF, Kielkopf JF (2009) Collisional effects in the far red wing of Lyman-\(\alpha \). A&A 493(3):1155–1160. doi: 10.1051/0004-6361:200810294 ADSCrossRefGoogle Scholar
  6. Allard NF, Drira I, Gerbaldi M, Kielkopf J, Spielfiedel A (1998) New study of the quasi-molecular Lyman alpha satellites due to H-H and H-H(+) collisions. A&A 335:1124–1129ADSGoogle Scholar
  7. Allard NF, Royer A, Kielkopf JF, Feautrier N (1999) Effect of the variation of electric-dipole moments on the shape of pressure-broadened atomic spectral lines. Phys Rev A 60(2):1021–1033. doi: 10.1103/PhysRevA.60.1021 ADSCrossRefGoogle Scholar
  8. Allard NF, Kielkopf JF, Cayrel R, van ’t Veer-Menneret C (2008) Self-broadening of the hydrogen Balmer \(\alpha \) line. A&A 480(2):581–587. doi: 10.1051/0004-6361:20078437
  9. Allende Prieto C, García López RJ, Trujillo Bueno J (1997) The limited influence of pressure gradients on late-type stellar line asymmetries. ApJ 483:941–946ADSCrossRefGoogle Scholar
  10. Allende Prieto C, Asplund M, Fabiani Bendicho P (2004) Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations. A&A 423(3):1109–1117. doi: 10.1051/0004-6361:20047050 ADSCrossRefGoogle Scholar
  11. Aller LH (1963) Astrophysics. The atmospheres of the sun and stars. The Ronald Press Company, New YorkGoogle Scholar
  12. Alonso A, Arribas S, Martinez-Roger C (1996) Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0–K5). A&AS 117:227–254ADSCrossRefGoogle Scholar
  13. Anderson PW (1949) Pressure broadening in the microwave and infra-red regions. Phys Rev 76(5):647–661. doi: 10.1103/PhysRev.76.647 ADSMATHCrossRefGoogle Scholar
  14. Anderson PW (1952) A method of synthesis of the statistical and impact theories of pressure broadening. Phys Rev 86:809–809. doi: 10.1103/PhysRev.86.809 ADSCrossRefGoogle Scholar
  15. Andersen N (1981) Direct excitation in quasi-one-electron systems. Comm Atom Mol Phys 10(4):133–143Google Scholar
  16. Anstee SD (1992) The collisional broadening of alkali spectral lines by atomic hydrogen. PhD thesis, The University of QueenslandGoogle Scholar
  17. Anstee SD, O’Mara BJ (1991) An investigation of Brueckner’s theory of line broadening with application to the sodium D lines. MNRAS 253:549–560ADSCrossRefGoogle Scholar
  18. Anstee SD, O’Mara BJ (1995) Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen. MNRAS 276(3):859–866ADSCrossRefGoogle Scholar
  19. Anstee SD, O’Mara BJ, Ross JE (1997) A determination of the solar abundance of iron from the strong lines of Fe I. MNRAS 284(1):202–212ADSCrossRefGoogle Scholar
  20. Asplund M (2005) New light on stellar abundance analyses: departures from LTE and homogeneity. ARA&A 43(1):481–530. doi: 10.1146/annurev.astro.42.053102.134001 ADSCrossRefGoogle Scholar
  21. Asplund M, Gustafsson B, Kiselman D, Eriksson K (1997) Line-blanketed model atmospheres for R Coronae Borealis stars and hydrogen-deficient carbon stars. A&A 318:521–534ADSGoogle Scholar
  22. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. ARA&A 47(1):481–522. doi: 10.1146/annurev.astro.46.060407.145222 ADSCrossRefGoogle Scholar
  23. Ayres TR (1977) A reexamination of solar upper photosphere models, the calcium abundance, and empirical damping parameters. ApJ 213:296–308. doi: 10.1086/155156 ADSCrossRefGoogle Scholar
  24. Ayres TR, Wiedemann GR (1989) Non-LTE CO, revisited. ApJ 338:1033–1046. doi: 10.1086/167256 ADSCrossRefGoogle Scholar
  25. Badnell NR (1986) Dielectric recombination of Fe(22+) and Fe(21+). J Phys B: At Mol Phys 19:3827–3835. doi: 10.1088/0022-3700/19/22/023 ADSCrossRefGoogle Scholar
  26. Badnell NR (1999) A perturbative approach to the coupled outer-region equations for the electron-impact excitation of neutral atoms. J Phys B: At Mol Opt Phys 32(2):5583–5591. doi: 10.1088/0953-4075/32/23/312 ADSCrossRefGoogle Scholar
  27. Baird JP, Eckart MJ, Sandeman RJ (1979) The width of the Na D2 resonance line (lambda 5890) in atmospheres of helium and neon and atomic hydrogen. J Phys B: At Mol Phys 12(3):355. doi: 10.1088/0022-3700/12/3/012 ADSCrossRefGoogle Scholar
  28. Baranger M (1958a) General impact theory of pressure broadening. Phys Rev 112(3):855–865. doi: 10.1103/PhysRev.112.855 ADSMathSciNetMATHCrossRefGoogle Scholar
  29. Baranger M (1958b) Problem of overlapping lines in the theory of pressure broadening. Phys Rev 111(2):494–504. doi: 10.1103/PhysRev.111.494 ADSMathSciNetMATHCrossRefGoogle Scholar
  30. Baranger M (1958c) Simplified quantum-mechanical theory of pressure broadening. Phys Rev 111:481–493. doi: 10.1103/PhysRev.111.481 ADSMathSciNetMATHCrossRefGoogle Scholar
  31. Baranger M (1962) Spectral line broadening in plasmas. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 493CrossRefGoogle Scholar
  32. Barklem PS (2007a) Electron-impact excitation of neutral oxygen. A&A 462(2):781–788. doi: 10.1051/0004-6361:20066341
  33. Barklem PS (2007b) Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms. A&A 466(1):327–337. doi: 10.1051/0004-6361:20066686 ADSCrossRefGoogle Scholar
  34. Barklem PS (2008) Hydrogen lines. Phys Scr 2008(T133):014023. doi: 10.1088/0031-8949/2008/T133/014023 CrossRefGoogle Scholar
  35. Barklem PS (2015a) KAULAKYS: inelastic collisions between hydrogen atoms and Rydberg atoms. doi: 10.5281/zenodo.50217.
  36. Barklem PS (2015b) MSWAVEF: momentum-Space Wavefunctions. doi: 10.5281/zenodo.50218.
  37. Barklem PS (2016) Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: theory, comparisons, and application to Ca. Phys Rev A 93(4):042705. doi: 10.1103/PhysRevA.93.042705 ADSCrossRefGoogle Scholar
  38. Barklem PS, Aspelund-Johansson J (2005) The broadening of Fe II lines by neutral hydrogen collisions. A&A 435(1):373–377. doi: 10.1051/0004-6361:20042469 ADSCrossRefGoogle Scholar
  39. Barklem PS, Collet R (2016) Partition functions and equilibrium constants for diatomic molecules and atoms of astrophysical interest. A&A 588:A96. doi: 10.1051/0004-6361/201526961 ADSCrossRefGoogle Scholar
  40. Barklem PS, O’Mara BJ (1997) The broadening of p-d and d-p transitions by collisions with neutral hydrogen atoms. MNRAS 290(1):102–106ADSCrossRefGoogle Scholar
  41. Barklem PS, O’Mara BJ (1998) The broadening of strong lines of \(\text{ Ca }^{+}\), \(\text{ Mg }^{+}\) and \(\text{ Ba }^{+}\) by collisions with neutral hydrogen atoms. MNRAS 300(3):863–871. doi: 10.1046/j.1365-8711.1998.01942.x ADSCrossRefGoogle Scholar
  42. Barklem PS, O’Mara BJ (2000) Broadening of lines of Be II, Sr II and Ba II by collisions with hydrogen atoms and the solar abundance of strontium. MNRAS 311(3):535–540. doi: 10.1046/j.1365-8711.2000.03090.x ADSCrossRefGoogle Scholar
  43. Barklem PS, O’Mara BJ (2001) Comments on alternative calculations of the broadening of spectral lines of neutral sodium by H-atom collisions. J Phys B: At Mol Opt Phys 34(2):4785–4799. doi: 10.1088/0953-4075/34/23/321 ADSCrossRefGoogle Scholar
  44. Barklem PS, Piskunov N (2003) Hydrogen Balmer lines as probes of stellar atmospheres. In: Piskunov N, Weiss WW, Gray DF (eds) Proceedings of the 210th symposium of the international astronomical union, vol 210. Astronomical Society of the Pacific, p E28Google Scholar
  45. Barklem PS, Piskunov N (2015) HLINOP: Hydrogen LINe OPacity in stellar atmospheres, Astrophysics Source Code Library, record ascl:1507.008. doi: 10.5281/zenodo.50215
  46. Barklem PS, Anstee SD, O’Mara BJ (1998a) Line broadening cross sections for the broadening of transitions of neutral atoms by collisions with neutral hydrogen. PASA 15:336–338ADSCrossRefGoogle Scholar
  47. Barklem PS, O’Mara BJ, Ross JE (1998) The broadening of d-f and f-d transitions by collisions with neutral hydrogen atoms. MNRAS 296(4):1057–1060. doi: 10.1046/j.1365-8711.1998.01484.x ADSCrossRefGoogle Scholar
  48. Barklem PS, Piskunov N, O’Mara BJ (2000a) A list of data for the broadening of metallic lines by neutral hydrogen collisions. A&AS 142:467–473. doi: 10.1051/aas:2000167 ADSCrossRefGoogle Scholar
  49. Barklem PS, Piskunov N, O’Mara BJ (2000b) Self-broadening in Balmer line wing formation in stellar atmospheres. A&A 363:1091–1105ADSGoogle Scholar
  50. Barklem PS, Piskunov N, O’Mara BJ (2000c) Self broadening of hydrogen lines: initial results. A&A 355:L5–L8ADSGoogle Scholar
  51. Barklem PS, Stempels HC, Allende Prieto C, Kochukhov OP, Piskunov N, O’Mara BJ (2002) Detailed analysis of Balmer lines in cool dwarf stars. A&A 385:951–967. doi: 10.1051/0004-6361:20020163 ADSCrossRefGoogle Scholar
  52. Barklem PS, Belyaev AK, Asplund M (2003) Inelastic H+Li and \(\text{ H }^{-}+\text{ Li }^{+}\) collisions and non-LTE Li I line formation in stellar atmospheres. A&A 409:L1–L4. doi: 10.1051/0004-6361:20031199 ADSCrossRefGoogle Scholar
  53. Barklem PS, Belyaev AK, Dickinson AS, Gadéa FX (2010) Inelastic Na+H collision data for non-LTE applications in stellar atmospheres. A&A 519:A20. doi: 10.1051/0004-6361/201015152 ADSCrossRefGoogle Scholar
  54. Barklem PS, Belyaev AK, Guitou M, Feautrier N, Gadéa FX, Spielfiedel A (2011) On inelastic hydrogen atom collisions in stellar atmospheres. A&A 530:94. doi: 10.1051/0004-6361/201116745 ADSCrossRefGoogle Scholar
  55. Barklem PS, Belyaev AK, Spielfiedel A, Guitou M, Feautrier N (2012) Inelastic Mg+H collision data for non-LTE applications in stellar atmospheres. A&A 541:A80. doi: 10.1051/0004-6361/201219081 ADSCrossRefGoogle Scholar
  56. Barklem PS, Anstee SD, O’Mara BJ (2015) abo-cross: Hydrogen broadening cross-section calculator, Astrophysics Source Code Library, record ascl:1507.007. doi: 10.5281/zenodo.50216
  57. Bartschat K, Zatsarinny O (2015) Close-coupling calculations for electron-atom collisions: benchmark studies and uncertainty estimates. Phys Scr 90(054):006. doi: 10.1088/0031-8949/90/5/054006 Google Scholar
  58. Bates DR (1954) Chap. 12. In: Kuiper GP (ed) The Earth as a planet. University of Chicago Press, p 625Google Scholar
  59. Bates DR (1962) Theoretical treatment of collisions between atomic systems. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 550Google Scholar
  60. Bates DR, McCarroll R (1958) Electron capture in slow collisions. Proc R Soc Lond Ser A Math Phys Sci 245(1241):175–183ADSMATHCrossRefGoogle Scholar
  61. Bates DR, Massey HSW, Stewart AL (1953) Inelastic collisions between atoms. I. General theoretical considerations. Proc R Soc Lond Ser A Math Phys Sci 216(1127):437–458Google Scholar
  62. Bautista MA (1997) Atomic data from the IRON Project. XX. Photoionization cross sections and oscillator strengths for Fe I. A&AS 122:167–176. doi: 10.1051/aas:1997327 ADSCrossRefGoogle Scholar
  63. Bautista MA, Pradhan AK (1995) Photoionization of neutral iron. J Phys B: At Mol Opt Phys 28(6):L173. doi: 10.1088/0953-4075/28/6/004 ADSCrossRefGoogle Scholar
  64. Bautista MA, Romano P, Pradhan AK (1998) Resonance-averaged photoionization cross sections for astrophysical models. ApJS 118:259–265. doi: 10.1086/313132 ADSCrossRefGoogle Scholar
  65. Bely O, van Regemorter H (1970) Excitation and ionization by electron impact. ARA&A 8:329. doi: 10.1146/annurev.aa.08.090170.001553 ADSCrossRefGoogle Scholar
  66. Belyaev AK (1993) Theoretical investigations of charge exchange with ion excitation in atomic collisions at thermal energies. Phys Rev A 48(6):4299–4306. doi: 10.1103/PhysRevA.48.4299 ADSCrossRefGoogle Scholar
  67. Belyaev AK (2009) Nonadiabatic effects in inelastic collisional processes. Phys Scr 80(4):048,113. doi: 10.1088/0031-8949/80/04/048113
  68. Belyaev AK (2010) Revised Born-Oppenheimer approach and a reprojection method for inelastic collisions. Phys Rev A 82(6):060701. doi: 10.1103/PhysRevA.82.060701 ADSCrossRefGoogle Scholar
  69. Belyaev AK (2013a) Inelastic aluminium–hydrogen collision data for non-LTE applications in stellar atmospheres. A&A 560:A60. doi: 10.1051/0004-6361/201322389 ADSCrossRefGoogle Scholar
  70. Belyaev AK (2013b) Model approach for low-energy inelastic atomic collisions and application to Al+H and \(\text{ Al }^{+}+\text{ H }^{-}\). Phys Rev A 88(5):052704. doi: 10.1103/PhysRevA.88.052704 ADSMathSciNetCrossRefGoogle Scholar
  71. Belyaev AK, Barklem PS (2003) Cross sections for low-energy inelastic H+Li collisions. Phys Rev A 68(6):062703. doi: 10.1103/PhysRevA.68.062703 ADSCrossRefGoogle Scholar
  72. Belyaev AK, Lebedev OV (2011) Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Phys Rev A 84(1):014701. doi: 10.1103/PhysRevA.84.014701 ADSCrossRefGoogle Scholar
  73. Belyaev AK, Tserkovnyi SI (1987) Opt Spectrosc 63:968Google Scholar
  74. Belyaev AK, Grosser J, Hahne J, Menzel T (1999) Ab initio cross sections for low-energy inelastic H+Na collisions. Phys Rev A 60(3):2151–2158. doi: 10.1103/PhysRevA.60.2151 ADSCrossRefGoogle Scholar
  75. Belyaev AK, Egorova D, Grosser J, Menzel T (2001) Electron translation and asymptotic couplings in low-energy atomic collisions. Phys Rev A 64(5):052701. doi: 10.1103/PhysRevA.64.052701 ADSCrossRefGoogle Scholar
  76. Belyaev AK, Dalgarno A, McCarroll R (2002) The dependence of nonadiabatic couplings on the origin of electron coordinates. J Chem Phys 116(13):5395–5400. doi: 10.1063/1.1457443 ADSCrossRefGoogle Scholar
  77. Belyaev AK, Barklem PS, Dickinson AS, Gadéa FX (2010) Cross sections for low-energy inelastic H + Na collisions. Phys Rev A 81(3):032706. doi: 10.1103/PhysRevA.81.032706 ADSCrossRefGoogle Scholar
  78. Belyaev AK, Barklem PS, Spielfiedel A, Guitou M, Feautrier N, Rodionov DS, Vlasov DV (2012) Cross sections for low-energy inelastic Mg+H and \(\text{ Mg }^{+} + \text{ H }^{-}\) collisions. Phys Rev A 85(3):32704. doi: 10.1103/PhysRevA.85.032704 ADSCrossRefGoogle Scholar
  79. Belyaev AK, Yakovleva SA, Barklem PS (2014) Inelastic silicon–hydrogen collision data for non-LTE applications in stellar atmospheres. A&A 572:A103. doi: 10.1051/0004-6361/201424714 ADSCrossRefGoogle Scholar
  80. Bergemann M, Cescutti G (2010) Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy. A&A 522:A9. doi: 10.1051/0004-6361/201014250 ADSCrossRefGoogle Scholar
  81. Bergemann M, Hansen CJ, Bautista M, Ruchti G (2012a) NLTE analysis of Sr lines in spectra of late-type stars with new R-matrix atomic data. A&A 546:A90. doi: 10.1051/0004-6361/201219406 ADSCrossRefGoogle Scholar
  82. Bergemann M, Lind K, Collet R, Magic Z, Asplund M (2012) Non-LTE line formation of Fe in late-type stars-I. Standard stars with 1D and mean-3D model atmospheres. MNRAS 427(1):27–49. doi: 10.1111/j.1365-2966.2012.21687.x ADSCrossRefGoogle Scholar
  83. Berkner A, Schweitzer A, Hauschildt PH (2015) 3D Multi-level non-LTE radiative transfer for the CO molecule. In: Cambridge workshop on cool stars, stellar systems, and the Sun, vol 18, pp 689–692Google Scholar
  84. Bernath PF (2009) Molecular astronomy of cool stars and sub-stellar objects. Int Rev Phys Chem 28:681–709. doi: 10.1080/01442350903292442 CrossRefGoogle Scholar
  85. Bernath PF, Colin R (2009) Revised molecular constants and term values for the X2\(\varPi \) and B2\(\varSigma \)+ states of OH. J Mol Spec 257(1):20–23. doi: 10.1016/j.jms.2009.06.003 ADSCrossRefGoogle Scholar
  86. Berrington KA, Burke PG, Butler K, Seaton MJ, Storey PJ, Taylor KT, Yan Y (1987) Atomic data for opacity calculations. II. Computational methods. J Phys B: At Mol Phys 20(23):6379–6397. doi: 10.1088/0022-3700/20/23/027 ADSCrossRefGoogle Scholar
  87. Berrington KA, Eissner WB, Norrington PH (1995) RMATRX1: Belfast atomic R-matrix codes. Comput Phys Commun 92(2):290–420. doi: 10.1016/0010-4655(95)00123-8 ADSCrossRefGoogle Scholar
  88. Blackwell-Whitehead RJ, Pickering JC, Pearse O, Nave G (2005) Hyperfine structure measurements of neutral manganese with Fourier transform spectroscopy. ApJS 157:402–409. doi: 10.1086/427924 ADSCrossRefGoogle Scholar
  89. Bohm D (1951) Quantum theory. Dover Publications, New YorkGoogle Scholar
  90. Bohr N (1913a) I. On the constitution of atoms and molecules. Philos Mag Ser 6 26(151):1–25. doi: 10.1080/14786441308634955
  91. Bohr N (1913b) The spectra of helium and hydrogen. Nature 92:231–232. doi: 10.1038/092231d0 ADSCrossRefGoogle Scholar
  92. Bohr N (1913c) XXXVII. On the constitution of atoms and molecules. Philos Mag Ser 6 26(153):476–502. doi: 10.1080/14786441308634993
  93. Borrero JM, Bellot Rubio LR, Barklem PS, del Toro Iniesta JC (2003) Accurate atomic parameters for near-infrared spectral lines. A&A 404:749–762. doi: 10.1051/0004-6361:20030548 ADSCrossRefGoogle Scholar
  94. Bray I (1994a) Convergent close-coupling calculation of electron-sodium scattering. Phys Rev A 49(1):R1–R4. doi: 10.1103/PhysRevA.49.R1 ADSCrossRefGoogle Scholar
  95. Bray I (1994b) Convergent close-coupling method for the calculation of electron scattering on hydrogen-like targets. Phys Rev A 49:1066–1082. doi: 10.1103/PhysRevA.49.1066 ADSCrossRefGoogle Scholar
  96. Bray I, Fursa DV (2011) Benchmark cross sections for electron-impact total single ionization of helium. J Phys B: At Mol Opt Phys 44(6):061001. doi: 10.1088/0953-4075/44/6/061001 ADSCrossRefGoogle Scholar
  97. Bray I, Stelbovics AT (1992) Convergent close-coupling calculations of electron-hydrogen scattering. Phys Rev A 46(1):6995–7011. doi: 10.1103/PhysRevA.46.6995 ADSCrossRefGoogle Scholar
  98. Bray I, Stelbovics AT (1995) The convergent close-coupling method for a Coulomb three-body problem. Comput Phys Commun 85(1):1–17. doi: 10.1016/0010-4655(94)00134-N ADSCrossRefGoogle Scholar
  99. Bray I, Fursa DV, Kheifets AS, Stelbovics AT (2002) Electrons and photons colliding with atoms: development and application of the convergent close-coupling method. J Phys B: At Mol Opt Phys 35(15):R117. doi: 10.1088/0953-4075/35/15/201 ADSCrossRefGoogle Scholar
  100. Bray I, Fursa DV, Kadyrov AS, Stelbovics AT, Kheifets AS, Mukhamedzhanov AM (2012) Electron- and photon-impact atomic ionisation. Phys Rep 520(3):135–174. doi: 10.1016/j.physrep.2012.07.002 ADSCrossRefGoogle Scholar
  101. Brissaud A, Frisch U (1971) Theory of Stark broadening—II exact line profile with model microfield. JQSRT 11(12):1767–1783. doi: 10.1016/0022-4073(71)90021-5 ADSCrossRefGoogle Scholar
  102. Brueckner KA (1971) Collision broadening by neutral hydrogen. ApJ 169:621. doi: 10.1086/151181 ADSCrossRefGoogle Scholar
  103. Burgess A, Summers HP (1976) The recombination and level populations of ions. I—hydrogen and hydrogenic ions. MNRAS 174:345–391ADSCrossRefGoogle Scholar
  104. Burke PG, Berrington KA (1993) Atomic and molecular processes: an R-matrix approach. Institute of Physics Publishing, BristolGoogle Scholar
  105. Burke VM, Noble CJ (1995) Farm—a flexible asymptotic R-matrix package. Comput Phys Commun 85(3):471–500. doi: 10.1016/0010-4655(94)00178-5 ADSCrossRefGoogle Scholar
  106. Burke PG, Hibbert A, Robb WD (1971) Electron scattering by complex atoms. J Phys B: At Mol Phys 4(2):153–161. doi: 10.1088/0022-3700/4/2/002 ADSCrossRefGoogle Scholar
  107. Caffau E, Ludwig HG, Steffen M, Ayres TR, Bonifacio P, Cayrel R, Freytag B, Plez B (2008) The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models. A&A 488:1031–1046. doi: 10.1051/0004-6361:200809885 ADSCrossRefGoogle Scholar
  108. Carbon DF, Milkey RW, Heasley JN (1976) Departures from LTE in the fundamental bands of CO in cool stars. ApJ 207:253–262. doi: 10.1086/154489 ADSCrossRefGoogle Scholar
  109. Carlsson M, Rutten RJ, Shchukina NG (1992) The formation of the Mg I emission features near 12 microns. A&A 253:567–585ADSGoogle Scholar
  110. Castelli F, Kurucz RL (2001) Ultraviolet spectra for lambda Boo (HD 125162) computed with H2 opacities and Lyman-alpha H-H and H-H+ opacities. A&A 372:260–275. doi: 10.1051/0004-6361:20010445 ADSCrossRefGoogle Scholar
  111. Castelli F, Kurucz RL (2010) New Fe II energy levels from stellar spectra. A&A 520:A57. doi: 10.1051/0004-6361/201015126 ADSCrossRefGoogle Scholar
  112. Castelli F, Kurucz R, Hubrig S (2009) New identified \((^{\hat{}}{3\text{ H }})\)4d-\((^{\hat{}}{3\text{ H }})\)4f transitions of Fe II from UVES spectra of HR 6000 and 46 Aquilae. A&A 508:401–408. doi: 10.1051/0004-6361/200912518 ADSCrossRefGoogle Scholar
  113. Castelli F, Kurucz RL, Cowley CR (2015) New Mn II energy levels from the STIS-HST spectrum of the HgMn star HD 175640. A&A 580:A10. doi: 10.1051/0004-6361/201525903 ADSCrossRefGoogle Scholar
  114. Cayrel R, Traving G (1960) Zur Frage der Druckverbreiterung der solaren Balmerlinien. Z Astrophys 50:239ADSGoogle Scholar
  115. Cayrel R, Depagne E, Spite M, Hill V, Spite F, François P, Plez B, Beers T, Primas F, Andersen J, Barbuy B, Bonifacio P, Molaro P, Nordström B (2004) First stars V—abundance patterns from C to Zn and supernova yields in the early Galaxy. A&A 416:1117–1138. doi: 10.1051/0004-6361:20034074 ADSCrossRefGoogle Scholar
  116. Cayrel R, Van t Veer-Menneret C, Allard NF, Stehle C (2011) The H-alpha Balmer line as an effective temperature criterion. A&A 531:A83. doi: 10.1051/0004-6361/201116911
  117. Chamberlain JW (1956) Excitation in nebulae: charge transfer and the Cassiopeia radio source. ApJ 124:390. doi: 10.1086/146233 ADSCrossRefGoogle Scholar
  118. Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Zsolar. ApJ 608:405–410. doi: 10.1086/392523 ADSCrossRefGoogle Scholar
  119. Christlieb N, Beers TC, Barklem PS, Bessell M, Hill V, Holmberg J, Korn AJ, Marsteller B, Mashonkina L, Qian YZ, Rossi S, Wasserburg GJ, Zickgraf FJ, Kratz KL, Nordström B, Pfeiffer B, Rhee J, Ryan SG (2004) The Hamburg/ESO R-process Enhanced Star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements. A&A 428:1027–1037. doi: 10.1051/0004-6361:20041536 ADSCrossRefGoogle Scholar
  120. Civiš S, Ferus M, Chernov VE, Zanozina EM (2013) Infrared transitions and oscillator strengths of Ca and Mg. A&A 554:A24. doi: 10.1051/0004-6361/201321052 ADSCrossRefGoogle Scholar
  121. Cohen JG, Christlieb N, McWilliam A, Shectman S, Thompson I, Wasserburg GJ, Ivans I, Dehn M, Karlsson T, Melendez J (2004) Abundances in very metal-poor dwarf stars. ApJ 612:1107–1135. doi: 10.1086/422576 ADSCrossRefGoogle Scholar
  122. Cooper J, Smith EW, Vidal CR (1974) Influence of ion dynamics on H\(\alpha \) and H\(\beta \) at low densities. J Phys B: At Mol Phys 7(4):L101–L105. doi: 10.1088/0022-3700/7/4/005 ADSCrossRefGoogle Scholar
  123. Cowan RD (1968) Theoretical calculation of atomic spectra using digital computers. J Opt Soc Am 58(6):808. doi: 10.1364/JOSA.58.000808 ADSCrossRefGoogle Scholar
  124. Cowan RD (1981) The Theory of Atomic Structure and Spectra. Los Alamos Series in Basic and Applied Sciences. University of California Press, Berkley, Los Angeles, London, p 650Google Scholar
  125. Crawford DL (1958) Two-dimensional spectral classification by narrow-band photometry for B stats in clusters and associations. ApJ 128:185. doi: 10.1086/146536 ADSCrossRefGoogle Scholar
  126. Croft H, Dickinson AS, Gadéa FX (1999) A theoretical study of mutual neutralization in \(\text{ Li }^{+}+\text{ H }^{-}\) collisions. J Phys B: At Mol Opt Phys 32(1):81–94. doi: 10.1088/0953-4075/32/1/008 ADSCrossRefGoogle Scholar
  127. Cunto W, Mendoza C, Ochsenbein F, Zeippen CJ (1993) Topbase at the CDS. A&A 275:L5Google Scholar
  128. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94(1):7221–7230. doi: 10.1063/1.460205 ADSCrossRefGoogle Scholar
  129. Däppen W, Anderson L, Mihalas D (1987) Statistical mechanics of partially ionized stellar plasma—the Planck–Larkin partition function, polarization shifts, and simulations of optical spectra. ApJ 319:195–206. doi: 10.1086/165446 ADSCrossRefGoogle Scholar
  130. Delbouille L, Roland G, Neven L (1990) Atlas photometrique du spectre solaire de [lambda] 3000 a [lambda] 10000. Universite de Liege, Institut d’Astrophysique, LiegeGoogle Scholar
  131. Deridder G, van Rensbergen W (1976) Tables of damping constants of spectral lines broadened by H and He. A&AS 23:147ADSGoogle Scholar
  132. Derouich M, Barklem PS (2007) Spin depolarizing effect in collisions with neutral hydrogen. II. Application to simple/complex ions in spherically symmetric states. A&A 462(3):1171–1177. doi: 10.1051/0004-6361:20066066
  133. Derouich M, Sahal-Bréchot S, Barklem PS (2003a) Collisional depolarization and transfer rates of spectral lines by atomic hydrogen. II. Application to d states of neutral atoms. A&A 409:369–373. doi: 10.1051/0004-6361:20031058 ADSCrossRefGoogle Scholar
  134. Derouich M, Sahal-Bréchot S, Barklem PS, O’Mara BJ (2003b) Semi-classical theory of collisional depolarization of spectral lines by atomic hydrogen I. Application to p states of neutral atoms. A&A 404:763–773. doi: 10.1051/0004-6361:20030568 ADSCrossRefGoogle Scholar
  135. Derouich M, Sahal-Bréchot S, Barklem PS (2004a) Collisional depolarization and transfer rates of spectral lines by atomic hydrogen. IV. Application to ionised atoms. A&A 426:707–715. doi: 10.1051/0004-6361:20047188 ADSCrossRefGoogle Scholar
  136. Derouich M, Sahal-Bréchot S, Barklem PS (2004b) On the collisional depolarization and transfer rates of spectral lines by atomic hydrogen. III. Application to f-states of neutral atoms. A&A 414:373–376. doi: 10.1051/0004-6361:20034144 ADSCrossRefGoogle Scholar
  137. Derouich M, Barklem PS, Sahal-Bréchot S (2005a) Spin depolarizing effect in collisions of simple/complex atoms in spherically symmetric states with neutral hydrogen. A&A 441(1):395–406. doi: 10.1051/0004-6361:20053087 ADSCrossRefGoogle Scholar
  138. Derouich M, Sahal-Bréchot S, Barklem PS (2005b) Collisional depolarization of the lines of complex atoms/ions by neutral hydrogen. A&A 434(2):779–784. doi: 10.1051/0004-6361:20042192 ADSCrossRefGoogle Scholar
  139. Derouich M, Radi A, Barklem PS (2015) Unified numerical model of collisional depolarization and broadening rates that are due to hydrogen atom collisions. A&A 584:A64. doi: 10.1051/0004-6361/201526661 ADSCrossRefGoogle Scholar
  140. Dickinson AS, Poteau R, Gadéa FX (1999) An ab initio study of mutual neutralization in \(\text{ Na }^{+}+\text{ H }^{-}\) collisions. J Phys B: At Mol Opt Phys 32(23):5451–5461. doi: 10.1088/0953-4075/32/23/303 ADSCrossRefGoogle Scholar
  141. Docken KK, Hinze J (1972) LiH potential curves and wavefunctions for X 1\(\varSigma \)+, A 1\(\varSigma \)+, B 1\(\varPi \), 3\(\varSigma \)+, and 3\(\varPi \). J Chem Phys 57(11):4928–4936. doi: 10.1063/1.1678164 ADSCrossRefGoogle Scholar
  142. Drawin HW (1968) Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas. Z Phys 211(4):404–417. doi: 10.1007/BF01379963 ADSCrossRefGoogle Scholar
  143. Drawin HW (1969) Influence of atom–atom collisions on the collisional–radiative ionization and recombination coefficients of hydrogen plasmas. Z Phys 225(5):483–493. doi: 10.1007/BF01392775 ADSCrossRefGoogle Scholar
  144. Drawin HW, Emard F (1973) Atom-atom excitation and ionization in shock waves of the noble gases. Phys Lett A 43(4):333–335. doi: 10.1016/0375-9601(73)90331-9 ADSCrossRefGoogle Scholar
  145. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) GRASP: a general-purpose relativistic atomic structure program. Comput Phys Commun 55:425–456. doi: 10.1016/0010-4655(89)90136-7 ADSCrossRefGoogle Scholar
  146. Ehrich H, Kelleher DE (1980) Experimental investigation of plasma-broadened hydrogen Balmer lines at low electron densities. Phys Rev A 21:319–334. doi: 10.1103/PhysRevA.21.319 ADSCrossRefGoogle Scholar
  147. Eissner W, Jones M, Nussbaumer H (1974) Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput Phys Commun 8:270–306. doi: 10.1016/0010-4655(74)90019-8 ADSCrossRefGoogle Scholar
  148. Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid MR, Froese Fischer C (2014) Calculations with spectroscopic accuracy: energies, transition rates, and Landé gJ-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV. A&A 564:A24. doi: 10.1051/0004-6361/201323163 ADSCrossRefGoogle Scholar
  149. Engleman R, Litzén U, Lundberg H, Wyart JF (1998) The Pd I spectrum, term system, isotope shift and hyperfine structure—revised and extended analysis based on FTS emission spectroscopy. Phys Scr 57:345–364. doi: 10.1088/0031-8949/57/3/006 ADSCrossRefGoogle Scholar
  150. Engström L, Lundberg H, Nilsson H, Hartman H, Bäckström E (2014) The FERRUM project: experimental transition probabilities from highly excited even 5s levels in Cr II. A&A 570:A34. doi: 10.1051/0004-6361/201424762 ADSCrossRefGoogle Scholar
  151. Errea LF, Méndez L, Mó O, Riera A (1986) Nonadiabatic ionic-covalent transitions. Exponential-linear model for the charge exchange and neutralization reactions Na+H \(\leftrightarrow \) \(\text{ Na }^{+}+\text{ H }^{-}\). J Chem Phys 84(1):147–151. doi: 10.1063/1.450190 ADSCrossRefGoogle Scholar
  152. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878. doi: 10.1103/PhysRev.124.1866 ADSMATHCrossRefGoogle Scholar
  153. Fano U, Cooper JW (1965) Line profiles in the far-uv absorption spectra of the rare gases. Phys Rev 137:1364–1379. doi: 10.1103/PhysRev.137.A1364 ADSMathSciNetCrossRefGoogle Scholar
  154. Faurobert-Scholl M, Feautrier N, Machefert F, Petrovay K, Spielfiedel A (1995) Turbulent magnetic fields in the solar photosphere: diagnostics and interpretation. A&A 298:289ADSGoogle Scholar
  155. Field GB, Steigman G (1971) Charge transfer and ionization equilibrium in the interstellar medium. ApJ 166:59. doi: 10.1086/150941 ADSCrossRefGoogle Scholar
  156. Fischer CF (2009) Evaluating the accuracy of theoretical transition data. Phys Scr T134(014):019. doi: 10.1088/0031-8949/2009/T134/014019 Google Scholar
  157. Fischer CF, Verdebout S, Godefroid M, Rynkun P, Jönsson P, Gaigalas G (2013) Toward calculations with spectroscopic accuracy: the 2s2.2p \({2\text{ Po }}_{3/2}\) - 2s2p2 \({4\text{ P }}_{5/2}\) excitation energy in Boron. arXiv:1310.2394 [physics]
  158. Fleck I, Grosser J, Schnecke A, Steen W, Voigt H (1991) Na atom excitation in low energy H+Na collisions. J Phys B: At Mol Opt Phys 24(1):4017–4023. doi: 10.1088/0953-4075/24/18/015 ADSCrossRefGoogle Scholar
  159. Foley HM (1946) The pressure broadening of spectral lines. Phys Rev 69(11–12):616–628. doi: 10.1103/PhysRev.69.616 ADSCrossRefGoogle Scholar
  160. Frisch U, Brissaud A (1971) Theory of Stark broadening—I soluble scalar model as a test. JQSRT 11(12):1753–1766. doi: 10.1016/0022-4073(71)90020-3 ADSCrossRefGoogle Scholar
  161. Fuhrmann K, Axer M, Gehren T (1994) Balmer lines in cool dwarf stars II. Effective temperatures and calibration of colour indices. A&A 285:585–594ADSGoogle Scholar
  162. Fursa DV, Bray I (1997) Convergent close-coupling calculations of electron scattering on helium-like atoms and ions: electron-beryllium scattering. J Phys B: At Mol Opt Phys 30(24):5895. doi: 10.1088/0953-4075/30/24/023 ADSCrossRefGoogle Scholar
  163. Gadéa FX, Boutalib A (1993) Computation and assignment of radial couplings using accurate diabatic data for the LiH molecule. J Phys B: At Mol Opt Phys 26(1):61–74. doi: 10.1088/0953-4075/26/1/006 ADSCrossRefGoogle Scholar
  164. Gray RO (1999) SPECTRUM: a stellar spectral synthesis program. Astrophysics Source Code Library, ascl:9910002Google Scholar
  165. Grevesse N, Noels A, Sauval AJ (1996) Standard abundances. In: Holt S.S., Sonneborn G (eds) Astronomical society of the Pacific conference series. Proceedings of the sixth annual October astrophysics conference in College Park, Maryland. Astronomical Society of the Pacific, vol 99, p 117Google Scholar
  166. Grice R, Herschbach DR (1974) Long-range configuration interaction of ionic and covalent states. Mol Phys 27(1):159–175. doi: 10.1080/00268977400100131 ADSCrossRefGoogle Scholar
  167. Griem H (1954) Starkeffekt-Verbreiterung der Balmer-Linien bei großen Elektronendichten. Z Phys 137(3):280–294. doi: 10.1007/BF01339151 ADSCrossRefGoogle Scholar
  168. Griem HR (1962) Wing formulae for stark-broadened hydrogen and hydrogenic lines. ApJ 136:422. doi: 10.1086/147394 ADSCrossRefGoogle Scholar
  169. Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New YorkGoogle Scholar
  170. Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  171. Griem HR, Kolb AC, Shen KY (1959) Stark broadening of hydrogen lines in a plasma. Phys Rev 116(1):4–16. doi: 10.1103/PhysRev.116.4 ADSMATHCrossRefGoogle Scholar
  172. Griffin D, Mitnik D, Colgan J, Pindzola M (2001) Electron-impact excitation of lithium. Phys Rev A 64(3). doi: 10.1103/PhysRevA.64.032718
  173. Grosser J, Menzel T, Belyaev AK (1999) Approach to electron translation in low-energy atomic collisions. Phys Rev A 59(2):1309–1316. doi: 10.1103/PhysRevA.59.1309 ADSCrossRefGoogle Scholar
  174. Guitou M, Spielfiedel A, Feautrier N (2010) Accurate potential energy functions and non-adiabatic couplings in the Mg+H system. Chem Phys Lett 488(4–6):145–152. doi: 10.1016/j.cplett.2010.02.031 ADSCrossRefGoogle Scholar
  175. Guitou M, Belyaev AK, Barklem PS, Spielfiedel A, Feautrier N (2011) Inelastic Mg+H collision processes at low energies. J Phys B: At Mol Opt Phys 44(3):035202. doi: 10.1088/0953-4075/44/3/035202 ADSCrossRefGoogle Scholar
  176. Gurtovenko EA, Kostik RI (1981) On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. I–oscillator strengths for 865 FeI lines iron abundance. A&AS 46:239–248ADSGoogle Scholar
  177. Gurtovenko EA, Kostik RI (1982) On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. III–oscillator strengths obtained from equivalent widths of 360 FeI lines. A&AS 47:193–197ADSGoogle Scholar
  178. Gustafsson B, Melendez J, Asplund M, Yong D (2010) The chemical composition of solar-type stars in comparison with that of the Sun. Astrophys Space Sci 328(1):185–191. doi: 10.1007/s10509-009-0257-6 ADSCrossRefGoogle Scholar
  179. Hibbert A (1975) CIV3—a general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput Phys Commun 9(3):141–172. doi: 10.1016/0010-4655(75)90103-4 ADSCrossRefGoogle Scholar
  180. Hibbert A, Dourneuf ML, Lan VK (1977) Atomic polarizabilities and polarized pseudo-states in the multiconfigurational approach. II. First row atoms and ions. J Phys B: At. Mol Phys 10(6):1015–1025. doi: 10.1088/0022-3700/10/6/012 CrossRefGoogle Scholar
  181. Hickman AP, Olson RE, Pascale J (1983) Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and ions. In: Stebbings RF, Dunning FB (eds) Rydberg states of atoms and molecules. Cambridge University Press, Cambridge, p 187Google Scholar
  182. Hinkle KH, Lambert DL (1975) Formation of molecular lines in stellar atmospheres. MNRAS 170:447–474ADSCrossRefGoogle Scholar
  183. Hoang Binh D, van Regemorter H (1995) The impulse approximation for the broadening of Mg I infrared lines by collisions with neutral hydrogen. J Phys B: At Mol Opt Phys 28(1):3147–3161. doi: 10.1088/0953-4075/28/15/009 ADSCrossRefGoogle Scholar
  184. Hoang Binh D, van Regemorter H (1997) Non-hydrogenic wavefunctions in momentum space. J Phys B: At Mol Opt Phys 30(1):2403–2416. doi: 10.1088/0953-4075/30/10/014 ADSCrossRefGoogle Scholar
  185. Holweger H (1971) Damping and solar abundance of sodium from Na I Fraunhofer lines. A&A 10:128ADSGoogle Scholar
  186. Hubeny I, Mihalas D (2014) Theory of stellar atmospheres. Princeton University Press, PrincetonMATHGoogle Scholar
  187. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants Of diatomic molecules. van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  188. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389. doi: 10.1063/1.2436891 ADSCrossRefGoogle Scholar
  189. Irikura KK (2009) Erratum: Experimental vibrational zero-point energies: diatomic molecules [J. Phys. Chem. Ref. Data 36, 389–397 (2007)]. J Phys Chem Ref Data 38(3):749. doi: 10.1063/1.3167794
  190. Irwin AW (1981) Polynomial partition function approximations of 344 atomic and molecular species. ApJS 45:621–633. doi: 10.1086/190730 ADSCrossRefGoogle Scholar
  191. Johansson S (2009) A half-life with Fe II: tight bonds and loose ends. Phys Scr 2009(T134):014013. doi: 10.1088/0031-8949/2009/T134/014013 CrossRefGoogle Scholar
  192. Johansson S, Litzén U, Lundberg H, Zhang Z (2003) Experimental f-value and isotopic structure for the Ni I line blended with [O I] at 6300 Å. ApJL 584:L107–L110. doi: 10.1086/374037 ADSCrossRefGoogle Scholar
  193. Judge PG (1986) Constraints on the outer atmospheric structure of late-type giant stars with IUE—methods and application to Arcturus (Alpha Boo K2III). MNRAS 221:119–153ADSCrossRefGoogle Scholar
  194. Karlsson T, Gustafsson B (2005) Stochastic chemical enrichment in metal-poor systems. II. Abundance ratios and scatter. A&A 436:879–894. doi: 10.1051/0004-6361:20042168 ADSCrossRefGoogle Scholar
  195. Kaulakys B (1985) Analytical expressions for cross sections of Rydberg-neutral inelastic collisions. J Phys B: At Mol Phys 18(6):L167–L170. doi: 10.1088/0022-3700/18/6/004 ADSCrossRefGoogle Scholar
  196. Kaulakys BP (1986) Free electron model for inelastic collisions between neutral atomic particles and Rydberg atoms. JETP 91:391–403Google Scholar
  197. Kaulakys B (1991) Free electron model for collisional angular momentum mixing of high Rydberg atoms. J Phys B: At Mol Phys 24(5):L127–L132. doi: 10.1088/0953-4075/24/5/004 ADSCrossRefGoogle Scholar
  198. Kepple P, Griem HR (1968) Improved stark profile calculations for the hydrogen lines H-alpha, H-beta, H-gamma, and H-delta. Phys Rev 173(1):317–325. doi: 10.1103/PhysRev.173.317 ADSCrossRefGoogle Scholar
  199. Kerkeni B, Barklem PS, Spielfiedel A, Feautrier N (2004) Collisional broadening of Mg, Sr, Ca and Na resonance lines by atomic hydrogen. J Phys B: At Mol Opt Phys 37(3):677–688. doi: 10.1088/0953-4075/37/3/012 ADSCrossRefGoogle Scholar
  200. Kielkopf JF, Allard NF (1998) Observation of the far wing of Lyman alpha due to neutral atom and ion collisions in a laser-produced plasma. Phys Rev A 58(6):4416–4425. doi: 10.1103/PhysRevA.58.4416 ADSCrossRefGoogle Scholar
  201. Kramida AE (2011) The program LOPT for least-squares optimization of energy levels. Comput Phys Commun 182(2):419–434. doi: 10.1016/j.cpc.2010.09.019 ADSMATHCrossRefGoogle Scholar
  202. Kramida A, Sansonetti JE (2013) Energy levels and spectral lines of singly ionized manganese (Mn II). ApJS 205:14. doi: 10.1088/0067-0049/205/2/14 ADSCrossRefGoogle Scholar
  203. Kramida A, Ralchenko Y, Reader J (2014) Current status of atomic spectroscopy databases at NIST. In: APS Division of atomic, molecular and optical physics meeting abstracts. American Physical Society, p 1047Google Scholar
  204. Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2015) Nist atomic spectra database (ver. 5.2), [online]. Available: National Institute of Standards and Technology, Gaithersburg, MD
  205. Krsljanin V, Peach G (1993) The broadening of sodium lines by atomic hydrogen. In: Spectral line shapes, vol 7. Nova Science, New York, p 527Google Scholar
  206. Kupka F, Piskunov N, Ryabchikova TA, Stempels HC, Weiss WW (1999) VALD-2: progress of the Vienna atomic line data base. A&AS 138(1):15. doi: 10.1051/aas:1999267 CrossRefGoogle Scholar
  207. Kurucz RL (1973) Semiempirical calculation of gf values: Sc II (3d+4s)2 - (3d+4s) 4p, a detailed example. SAO Special, Report 351Google Scholar
  208. Kurucz RL (1981) Semiempirical calculation of gf values, IV: Fe II. SAO Special, Report 390Google Scholar
  209. Kurucz RL (1990) Why I study the solar spectrum. In: Proceedings of the 3rd international colloquium of the Royal Netherlands Academy of Arts and Sciences. North Holland, Amsterdam, p 20Google Scholar
  210. Kurucz RL (1992) Atomic and molecular data for opacity calculations. Revista Mexicana de Astronomia y Astrofisica 23:45ADSGoogle Scholar
  211. Kurucz RL (1993) Atomic data for interpreting stellar spectra: isotopic and hyperfine data. Phys Scr T 47:110–117. doi: 10.1088/0031-8949/1993/T47/017 ADSCrossRefGoogle Scholar
  212. Kurucz RL (2011) Including all the lines. Can J Phys 89:417–428. doi: 10.1139/p10-104 ADSCrossRefGoogle Scholar
  213. Kurucz RL (2013) ATLAS12: Opacity sampling model atmosphere program. Astrophysics Source Code Library, ascl:1303024Google Scholar
  214. Kurucz RL (2016) Web page of R. L. Kurucz.
  215. Kurucz RL, Peytremann E (1975) A table of semiempirical gf values. Part 1: wavelengths: 5.2682 nm to 272.3380 nm. SAO Special Report 362Google Scholar
  216. Lambert DL (1993) Quantitative stellar spectroscopy with large optical telescopes. Phys Scr T 47:186–198. doi: 10.1088/0031-8949/1993/T47/030 ADSCrossRefGoogle Scholar
  217. Lambert J, Josselin E, Ryde N, Faure A (2013) NLTE water lines in Betelgeuse-like atmospheres. In: Kervella P, Le Bertre T, Perrin G (eds) EAS publications series, vol 60, pp 111–119. doi: 10.1051/eas/1360012
  218. Lambert J, Josselin E, Ryde N, Faure A (2015) A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation. A&A 580:A50. doi: 10.1051/0004-6361/201322852 ADSCrossRefGoogle Scholar
  219. Landau LD (1932a) Z Phys Sowjetunion 1:88Google Scholar
  220. Landau LD (1932b) Z Phys Sowjetunion 2:46Google Scholar
  221. Lang KR (1999) Astrophysical formulae. Springer, New YorkMATHGoogle Scholar
  222. Lawler JE, Sneden C, Cowan JJ, Ivans II, Hartog EAD (2009) Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the Sun and five r-process-rich, metal-poor stars, and rare Earth lab data summary. ApJS 182(1):51. doi: 10.1088/0067-0049/182/1/51 ADSCrossRefGoogle Scholar
  223. Le Dourneuf M (1976) Doctorat d’État, University of Paris VI, available from CNRS under registration AO12658Google Scholar
  224. Leininger T, Gadéa FX, Dickinson AS (2000) Broadening of the sodium 568.8, 589, 615.4 and 819.4 nm lines by atomic hydrogen. J Phys B: At Mol Opt Phys 33(9):1805–1817. doi: 10.1088/0953-4075/33/9/310
  225. Lemaire JL, Chotin JL, Rostas F (1985) Broadening and shift parameters of the sodium D lines perturbed by atomic hydrogen. J Phys B: At Mol Phys 18(1):95. doi: 10.1088/0022-3700/18/1/011 ADSCrossRefGoogle Scholar
  226. Lemke M (1997) Extended VCS Stark broadening tables for hydrogen—Lyman to Brackett series. A&AS 122:285–292. doi: 10.1051/aas:1997134 ADSCrossRefGoogle Scholar
  227. Lewis M (1961) Stark broadening of spectral lines by high-velocity charged particles. Phys Rev 121(2):501–505. doi: 10.1103/PhysRev.121.501 ADSCrossRefGoogle Scholar
  228. Lewis EL (1980) Collisional relaxation of atomic excited states, line broadening and interatomic interactions. Phys Rep 58(1):1–71. doi: 10.1016/0370-1573(80)90056-3 ADSCrossRefGoogle Scholar
  229. Lewis EL, McNamara LF, Michels HH (1971) Broadening of the sodium D lines by atomic hydrogen. An analysis in terms of the NaH molecular potentials. Phys Rev A 3(6):1939–1948. doi: 10.1103/PhysRevA.3.1939 ADSCrossRefGoogle Scholar
  230. Lind K, Asplund M, Barklem PS (2009) Departures from LTE for neutral Li in late-type stars. A&A 503(2):541–544. doi: 10.1051/0004-6361/200912221 ADSCrossRefGoogle Scholar
  231. Lind K, Asplund M, Barklem PS, Belyaev AK (2011) Non-LTE calculations for neutral Na in late-type stars using improved atomic data. A&A 528:103. doi: 10.1051/0004-6361/201016095 ADSCrossRefGoogle Scholar
  232. Lind K, Bergemann M, Asplund M (2012) Non-LTE line formation of Fe in late-type stars—II. 1D spectroscopic stellar parameters. MNRAS 427(1):50–60. doi: 10.1111/j.1365-2966.2012.21686.x ADSCrossRefGoogle Scholar
  233. Lindegren L, Feltzing S (2013) The case for high precision in elemental abundances of stars in the era of large spectroscopic surveys. A&A 553:A94. doi: 10.1051/0004-6361/201321057 ADSCrossRefGoogle Scholar
  234. Lindholm E (1946) Pressure broadening of spectral lines. Arkiv Mat Astron Fys 32:A:17Google Scholar
  235. Litzèn U, Brault JW, Thorne AP (1993) Spectrum and term system of neutral nickel, Ni I. Phys Scr 47:628. doi: 10.1088/0031-8949/47/5/004 ADSCrossRefGoogle Scholar
  236. Lortet MC, Roueff E (1969) Broadening of hydrogen lines in a neutral medium. A&A 3:462ADSGoogle Scholar
  237. Ludwig HG, Behara NT, Steffen M, Bonifacio P (2009) Impact of granulation effects on the use of Balmer lines as temperature indicators. A&A 502(2):L1–L4. doi: 10.1051/0004-6361/200911997 ADSCrossRefGoogle Scholar
  238. Malcheva G, Engström L, Lundberg H, Nilsson H, Hartman H, Blagoev K, Palmeri P, Quinet P (2015) Radiative lifetimes and transition probabilities in Rh I. MNRAS 450:223–228. doi: 10.1093/mnras/stv375 ADSCrossRefGoogle Scholar
  239. Mashonkina L, Zhao G, Gehren T, Aoki W, Bergemann M, Noguchi K, Shi JR, Takada-Hidai M, Zhang HW (2008) Non-LTE line formation for heavy elements in four very metal-poor stars. A&A 478(2):529–541. doi: 10.1051/0004-6361:20078060 ADSCrossRefGoogle Scholar
  240. Massey HSW (1949) Collisions between atoms and molecules at ordinary temperatures. Rep Prog Phys 12(1):248–269. doi: 10.1088/0034-4885/12/1/311 ADSCrossRefGoogle Scholar
  241. Meléndez J, Ramírez I, Casagrande L, Asplund M, Gustafsson B, Yong D, Do Nascimento JD, Castro M, Bazot M (2010) The solar, exoplanet and cosmological lithium problems. Astrophys Space Sci 328:193–200. doi: 10.1007/s10509-009-0187-3 ADSCrossRefGoogle Scholar
  242. Merle T, Thévenin F, Zatsarinny O (2015) Effective collision strengths between Mg I and electrons. A&A 577:A113. doi: 10.1051/0004-6361/201525914 ADSCrossRefGoogle Scholar
  243. Meyer W, Rosmus P (1975) PNO-CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides. J Chem Phys 63(6):2356–2375. doi: 10.1063/1.431665 ADSCrossRefGoogle Scholar
  244. Mó O, Riera A, Yáez M (1985) Calculation of radial couplings in the model-potential and pseudopotential approaches: the NaH quasimolecule. Phys Rev A 31(6):3977–3980. doi: 10.1103/PhysRevA.31.3977 ADSCrossRefGoogle Scholar
  245. Monteiro TS, Dickinson AS, Lewis EL (1985) The broadening and shift of the sodium D lines due to collisions with atomic hydrogen. J Phys B: At Mol Phys 18(17):3499. doi: 10.1088/0022-3700/18/17/012 ADSCrossRefGoogle Scholar
  246. Monteiro TS, Danby G, Cooper IL, Dickinson AS, Lewis EL (1988) Broadening of the \(\text{ Ca }^{+}\) and \(\text{ Mg }^{+}\) resonance lines by collision with atomic hydrogen. J Phys B: At Mol Phys 21:4165–4175. doi: 10.1088/0953-4075/21/24/016 ADSCrossRefGoogle Scholar
  247. Morell O, Kallander D, Butcher HR (1992) The age of the Galaxy from thorium in G dwarfs, a re-analysis. A&A 259:543–548ADSGoogle Scholar
  248. Mott NF (1931) On the theory of excitation by collision with heavy particles. Math Proc Camb Philos Soc 27(04):553–560. doi: 10.1017/S0305004100009816 ADSMATHCrossRefGoogle Scholar
  249. Mott NF, Massey HSW (1949) The theory of atomic collisions. Clarendon Press, OxfordMATHGoogle Scholar
  250. Nahar SN (2009) Photoionization and electron-ion recombination of Cr I. JQSRT 110:2148–2161. doi: 10.1016/j.jqsrt.2009.04.015 ADSCrossRefGoogle Scholar
  251. Nahar SN (2015a) NORAD-Atomic-Data (Nahar-OSU-Radiative-Atomic-Data).
  252. Nahar SN (2015) Photoionization of ground and excited states of Ti I. New Astron 38:16–22. doi: 10.1016/j.newast.2015.01.001 ADSCrossRefGoogle Scholar
  253. Nave G, Johansson S (1993a) Highly-excited levels of Fe I obtained from laboratory and solar Fourier transform and grating spectra—part two—laboratory and solar identifications. A&AS 102:269ADSGoogle Scholar
  254. Nave G, Johansson S (1993b) Highly-excited levels of Fe I obtained from laboratory and solar Fourier transform and grating spectra. 1. Energy levels. A&A 274:961Google Scholar
  255. Nave G, Johansson S (2013) The spectrum of Fe II. ApJS 204:1. doi: 10.1088/0067-0049/204/1/1 ADSCrossRefGoogle Scholar
  256. Nave G, Johansson S, Learner RCM, Thorne AP, Brault JW (1994) A new multiplet table for Fe I. ApJS 94:221–459. doi: 10.1086/192079 ADSCrossRefGoogle Scholar
  257. Nikitin E (2006) Adiabatic and diabatic collision processes at low energies. Springer handbook of atomic, molecular and optical physics p 741. doi: 10.1007/978-0-387-26308-3_49
  258. Nikitin EE, Umanskii SI (1984) Theory of slow atomic collisions, vol 30. Springer, BerlinGoogle Scholar
  259. Nikitin EE, Zülicke L (1978) Selected topics of the theory of chemical elementary processes. Lecture notes in chemistry, vol 8. Springer, Berlin [Includes index bibliography, pp 164–170]Google Scholar
  260. Norris JE, Yong D, Bessell MS, ChristliebN, Asplund M, Gilmore G, Wyse RFG, Beers TC, Barklem PS, Frebel A,Ryan SG (2013) The most metal-poor stars. IV. The two populationswith [Fe/H] \({<}\) -3.0. ApJ 762(1):28.doi: 10.1088/0004-637X/762/1/28
  261. Nussbaumer H, Storey PJ (1980) Atomic data for Fe II. A&A 89:308–313Google Scholar
  262. Oliver P, Hibbert A (2008) Energy level classifications and Breit–Pauli oscillator strengths in neutral tin. J Phys B: At Mol Opt Phys 41(16):165,003. doi: 10.1088/0953-4075/41/16/165003
  263. Olson RE, Liu B (1980) Interaction energies for low-lying electronic states of NaH and \(\text{ NaH }^{-}\): scattering of \(\text{ H }^{-}\) by alkali atoms. J Chem Phys 73(6):2817–2824. doi: 10.1063/1.440451 ADSCrossRefGoogle Scholar
  264. Olson RE, Smith FT, Bauer E (1971) Estimation of the coupling matrix elements for one-electron transfer systems. App Opt 10(8):1848–1855. doi: 10.1364/AO.10.001848 ADSCrossRefGoogle Scholar
  265. O’Mara BJ (1976) Comments on the broadening of spectral lines by collisions with atomic hydrogen. MNRAS 177:551–568ADSCrossRefGoogle Scholar
  266. O’Mara BJ, Gietzel PC (1978) The use of multipole expansions in spectral line-broadening theory. MNRAS 184:205–210ADSCrossRefGoogle Scholar
  267. O’Neill JA, Smith G (1980) Collisional broadening of spectral lines in laboratory and solar spectra. I-The 6162, 6122, 6102 a multiplet of neutral calcium. II–Low excitation lines of neutral iron. A&A 81:100–112ADSGoogle Scholar
  268. Osorio Y, Barklem PS (2016) Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models. A&A 586:A120. doi: 10.1051/0004-6361/201526958
  269. Osorio Y, Barklem PS, Lind K, Asplund M (2011) The influence of electron collisions on non-LTE Li line formation in stellar atmospheres. A&A 529:31. doi: 10.1051/0004-6361/201016418 ADSCrossRefGoogle Scholar
  270. Osorio Y, Barklem PS, Lind K, Belyaev AK, Spielfiedel A, Guitou M, Feautrier N (2015) Mg line formation in late-type stellar atmospheres. I. The model atom. A&A 579:A53. doi: 10.1051/0004-6361/201525846 ADSCrossRefGoogle Scholar
  271. Partridge H, Langhoff SR (1981) Theoretical treatment of the X 1\(\varSigma \)+, A 1\(\varSigma \)+, and B 1\(\varPi \) states of LiH. J Chem Phys 74(4):2361–2371. doi: 10.1063/1.441355 ADSCrossRefGoogle Scholar
  272. Peach G (1981) Theory of the pressure broadening and shift of spectral lines. Adv Phys 30(3):367–474. doi: 10.1080/00018738100101467 ADSCrossRefGoogle Scholar
  273. Peach G (2006) Collisional broadening of spectral lines. Springer handbook of atomic, molecular and optical physics, p 875. doi: 10.1007/978-0-387-26308-3_59
  274. Peach G (2011) Recent results for widths of lines important in the spectra of cool stars. Balt Astron 20:516–522ADSGoogle Scholar
  275. Peart B, Hayton DA (1994) Merged beam measurements of the mutual neutralization of \(\text{ He }^{+}/\text{ H }^{-}\) and \(\text{ Li }^{+}/\text{ D }^{-}\) ions. J Phys B: At Mol Opt Phys 27(12):2551–2556. doi: 10.1088/0953-4075/27/12/013 ADSCrossRefGoogle Scholar
  276. Pereira TMD, Asplund M, Kiselman D (2009) Oxygen lines in solar granulation II. Centre-to-limb variation, NLTE line formation, blends, and the solar oxygen abundance. A&A 508(3):1403–1416. doi: 10.1051/0004-6361/200912840
  277. Pereira TMD, Asplund M, Collet R, Thaler I, Trampedach R, Leenaarts J (2013) How realistic are solar model atmospheres? A&A 554:A118. doi: 10.1051/0004-6361/201321227 ADSCrossRefGoogle Scholar
  278. Peterson RC, Kurucz RL (2015) New Fe I level energies and line identifications from stellar spectra. ApJS 216:1. doi: 10.1088/0067-0049/216/1/1 ADSCrossRefGoogle Scholar
  279. Pickering JC (1996) Measurements of the hyperfine structure of atomic energy levels in Co I. ApJS 107:811. doi: 10.1086/192382 ADSCrossRefGoogle Scholar
  280. Piskunov NE, Kupka F, Ryabchikova TA, Weiss WW, Jeffery CS (1995) VALD: the Vienna atomic line data base. A&AS 112:525ADSGoogle Scholar
  281. Plaskett HH (1955) Interpretation of Fraunhofer-line profiles. MNRAS 115:256ADSCrossRefGoogle Scholar
  282. Plummer M, Noble CJ, Dourneuf ML (2004) Low-energy behaviour of e-O scattering calculations. J Phys B: At Mol Opt Phys 37(14):2979–2996. doi: 10.1088/0953-4075/37/14/011 ADSCrossRefGoogle Scholar
  283. Pradhan AK, Nahar SN (2011) Atomic astrophysics and spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  284. Prats F, Fano U (1964) Metastable levels in the continuum and the independent particle model. In: McDowell MRC (ed) Atomic collision processes: proceedings of the third international conference on the physics of electronic and atomic collisions. North-Holland Publishing Company, Amsterdam, p 600Google Scholar
  285. Ramsbottom CA, Scott MP, Bell KL, Keenan FP, McLaughlin BM, Sunderland AG, Burke VM, Noble CJ, Burke PG (2002) Electron impact excitation of the iron peak element Fe II. J Phys B: At Mol Opt Phys 35(16):3451–3477. doi: 10.1088/0953-4075/35/16/308 ADSCrossRefGoogle Scholar
  286. Ramsbottom CA, Noble CJ, Burke VM, Scott MP, Burke PG (2007) Electron-impact excitation of Fe II. J Phys Conf Ser 58:283–286. doi: 10.1088/1742-6596/58/1/062 ADSCrossRefGoogle Scholar
  287. Reader J, Kramida A, Ralchenko Y (2012) NIST atomic spectroscopy databases in support of astronomy. In: American astronomical society meeting abstracts, vol 219Google Scholar
  288. Roueff E (1974) Broadening of the sodium D lines by atomic hydrogen. An analysis in terms of the S matrix. J Phys B: At. Mol Phys 7(2):185–198. doi: 10.1088/0022-3700/7/2/004 CrossRefGoogle Scholar
  289. Roueff E, van Regemorter H (1971) The Broadening by neutral hydrogen in the solar atmosphere. A&A 12:317ADSGoogle Scholar
  290. Ruffoni MP, Allende Prieto C, Nave G, Pickering JC (2013) Infrared laboratory oscillator strengths of Fe I in the H-band. ApJ 779:17. doi: 10.1088/0004-637X/779/1/17 ADSCrossRefGoogle Scholar
  291. Ryabchikova T, Piskunov N, Kurucz RL, Stempels HC, Heiter U, Pakhomov Y, Barklem PS (2015) A major upgrade of the VALD database. Phys Scr 90(054):005. doi: 10.1088/0031-8949/90/5/054005 Google Scholar
  292. Ryde N, Lambert J, Farzone M, Richter MJ, Josselin E, Harper GM, Eriksson K, Greathouse TK (2015) Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 \(\mu \)m spectra. A&A 573:A28. doi: 10.1051/0004-6361/201424851 ADSCrossRefGoogle Scholar
  293. Sachs ES, Hinze J, Sabelli NH (1975) MCSCF calculations for six states of NaH. J Chem Phys 62(9):3367–3376. doi: 10.1063/1.430989 ADSCrossRefGoogle Scholar
  294. Sahal-Brechot S (1969a) Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. A&A 1:91ADSGoogle Scholar
  295. Sahal-Brechot S (1969b) Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued). A&A 2:322ADSGoogle Scholar
  296. Sahal-Bréchot S, Bommier V (2014) Collisional line broadening versus collisional depolarization: similarities and differences. Adv Space Res 54(7):1164–1172. doi: 10.1016/j.asr.2013.10.016 ADSCrossRefGoogle Scholar
  297. Sahal-Bréchot S, Derouich M, Bommier V, Barklem PS (2007) Multipole rates for atomic polarization studies: the case of complex atoms in non-spherically symmetric states colliding with atomic hydrogen. A&A 465(2):667–677. doi: 10.1051/0004-6361:20066653 ADSCrossRefGoogle Scholar
  298. Sahal-Bréchot S, Dimitrijević MS, Nessib NB (2014) Widths and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: an outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations. Atoms 2(2):225–252. doi: 10.3390/atoms2020225 ADSCrossRefGoogle Scholar
  299. Sahal-Bréchot S, Dimitrijević MS, Moreau N, Ben Nessib N (2015) The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles. Phys Scr 90(054):008. doi: 10.1088/0031-8949/90/5/054008 Google Scholar
  300. Sanchez-Fortún Stoker J, Dickinson AS (2003) Line mixing in H broadening of the Na 3P–3D lines. J Phys B: At Mol Opt Phys 36(7):1309–1318. doi: 10.1088/0953-4075/36/7/303 ADSCrossRefGoogle Scholar
  301. Sauval AJ, Tatum JB (1984) A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest. ApJS 56:193–209. doi: 10.1086/190980 ADSCrossRefGoogle Scholar
  302. Schwartz C (1961) Electron scattering from hydrogen. Phys Rev 124(5):1468–1471. doi: 10.1103/PhysRev.124.1468 ADSCrossRefGoogle Scholar
  303. Schweinzer J, Brandenburg R, Bray I, Hoekstra R, Aumayr F, Janev RK, Winter HP (1999) Database for inelastic collisions of lithium atoms with electrons protons, and multiply charged ions. At Data Nucl Data Tables 72:239. doi: 10.1006/adnd.1999.0815 ADSCrossRefGoogle Scholar
  304. Schweitzer A, Hauschildt PH, Baron E (2000) Non-LTE treatment of molecules in the photospheres of cool stars. ApJ 541:1004–1015. doi: 10.1086/309461 ADSCrossRefGoogle Scholar
  305. Seaton MJ (1962a) The impact parameter method for electron excitation of optically allowed atomic transitions. Proc Phys Soc 79:1105–1117. doi: 10.1088/0370-1328/79/6/304 ADSCrossRefGoogle Scholar
  306. Seaton MJ (1962b) The theory of excitation and ionization by electron impact. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 375Google Scholar
  307. Shore BW (1967a) Analysis of absorption profiles of autoionizing lines. J Opt Soc Am 57(7):881. doi: 10.1364/JOSA.57.000881 ADSCrossRefGoogle Scholar
  308. Shore BW (1967b) Scattering theory of absorption-line profiles and refractivity. Rev Mod Phys 39(2):439–462. doi: 10.1103/RevModPhys.39.439 ADSCrossRefGoogle Scholar
  309. Smith G, Drake JJ (1988) Collisional broadening of the calcium infrared triplet lines by atomic hydrogen. MNRAS 231:115–123ADSCrossRefGoogle Scholar
  310. Smith EW, Cooper J, Vidal CR (1969) Unified classical-path treatment of stark broadening in plasmas. Phys Rev 185(1):140–151. doi: 10.1103/PhysRev.185.140 ADSCrossRefGoogle Scholar
  311. Smith EW, Cooper J, Vidal CR (1972) Comments on the validity of the unified classical path theory of Stark broadening. J Phys B: At Mol Phys 5(2):L33–L35. doi: 10.1088/0022-3700/5/2/006 ADSCrossRefGoogle Scholar
  312. Smith EW, Cooper J, Roszman LJ (1973) An analysis of the unified and scalar additivity theories of spectral line broadening. JQSRT 13(12):1523–1538. doi: 10.1016/0022-4073(73)90057-5 ADSCrossRefGoogle Scholar
  313. Smith G, Monteiro TS, Dickinson AS, Lewis EL (1985) Collisional broadening of the sodium D lines by atomic hydrogen. MNRAS 217:679–684ADSCrossRefGoogle Scholar
  314. Smith G, Edvardsson B, Frisk U (1986) Non-resonance lines of neutral calcium in the spectra of the Alpha Centauri binary system. A&A 165:126–134ADSGoogle Scholar
  315. Smitha HN, Nagendra KN, Stenflo JO, Bianda M, Ramelli R (2014) The quantum interference effects in the Sc II 4247 Å line of the second solar spectrum. ApJ 794(1):30. doi: 10.1088/0004-637X/794/1/30 ADSCrossRefGoogle Scholar
  316. Sneden C (1973) The nitrogen abundance of the very metal-poor star HD 122563. ApJ 184:839–849. doi: 10.1086/152374 ADSCrossRefGoogle Scholar
  317. Sneden C, Bean J, Ivans I, Lucatello S, Sobeck J (2012) MOOG: LTE line analysis and spectrum synthesis. Astrophysics Source Code Library, ascl:1202009Google Scholar
  318. Sneden C, Lawler JE, Wood MP, Hartog EAD, Cowan JJ (2014) Atomic data for stellar spectroscopy: recent successes and remaining needs. Phys Scr 89(11):114006. doi: 10.1088/0031-8949/89/11/114006 ADSCrossRefGoogle Scholar
  319. Spielfiedel A (2003) Ab initio calculation of electronic transition moments for singlet excited states of the \(\text{ H }_{2}\) molecule. J Mol Spec 217(2):162–172. doi: 10.1016/S0022-2852(02)00043-7 ADSCrossRefGoogle Scholar
  320. Spielfiedel A, Feautrier N, Chambaud G, Levy B (1991) Collision broadening of the 4s4p(3Po)-4s5s(3S) line of calcium perturbed by hydrogen and collision induced transitions among the 4s4p(3Po) states. J Phys B: At Mol Opt Phys 24(22):4711. doi: 10.1088/0953-4075/24/22/010 ADSCrossRefGoogle Scholar
  321. Spite M, Cayrel R, Plez B, Hill V, Spite F, Depagne E, François P, Bonifacio P, Barbuy B, Beers T, Andersen J, Molaro P, Nordström B, Primas F (2005) First stars VI—abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements. A&A 430:655–668. doi: 10.1051/0004-6361:20041274 ADSCrossRefGoogle Scholar
  322. Steenbock W, Holweger H (1984) Statistical equilibrium of lithium in cool stars of different metallicity. A&A 130:319–323ADSGoogle Scholar
  323. Steffen M, Prakapavičius D, Caffau E, Ludwig HG, Bonifacio P, Cayrel R, Kučinskas A, Livingston WC (2015) The photospheric solar oxygen project. IV. 3D-NLTE investigation of the 777 nm triplet lines. A&A 583:A57. doi: 10.1051/0004-6361/201526406
  324. Stehle C (1994) Stark broadening of hydrogen Lyman and Balmer in the conditions of stellar envelopes. A&AS 104:509–527ADSGoogle Scholar
  325. Stehle C, Fouquet S (2010) Hydrogen stark broadened Brackett lines. Int J Spec 2:1–6. doi: 10.1103/PhysRevA.51.1918 CrossRefGoogle Scholar
  326. Stehle C, Hutcheon R (1999) Extensive tabulations of Stark broadened hydrogen line profiles. A&AS 140:93–97. doi: 10.1051/aas:1999118 ADSCrossRefGoogle Scholar
  327. Stenflo JO, Keller CU (1997) The second solar spectrum. A new window for diagnostics of the Sun. A&A 321:927–934ADSGoogle Scholar
  328. Strömgren B (1956) Two-dimensional spectral classification of F stars through photoelectric photometry with interference filters. Vistas Astron 2:1336–1346. doi: 10.1016/0083-6656(56)90060-5 ADSCrossRefGoogle Scholar
  329. Struve O (1929) The stark effect in stellar spectra. ApJ 69:173. doi: 10.1086/143174 ADSCrossRefGoogle Scholar
  330. The Opacity Project Team (1995) The opacity project, Bristol, UK. Institute of Physics Pub, Philadelphia, 1995–1996Google Scholar
  331. Thevenin F (1989) Oscillator strengths from the solar spectrum. A&AS 77:137–154ADSGoogle Scholar
  332. Thevenin F (1990) Oscillator strengths from the solar spectrum. II. A&AS 82:179–188ADSGoogle Scholar
  333. Thomas RD, Schmidt HT, Gurell J, Haag N, Holm AIS, Johansson HAB, Källersjö G, Larsson M, Mannervik S, Misra D, Orban A, Reinhed P, Rensfelt KG, Rosén S, Seitz F, Weimer J, Zettergren H, Andler G, Danared H, Das S, Liljeby L, Björkhage M, Blom M, Brännholm L, Halldén P, Hellberg F, Källberg A, Leontein S, Löfgren P, Malm B, Paál A, Simonsson A, Cederquist H (2011) DESIREE: a unique cryogenic electrostatic storage ring for merged ion-beams studies. J Phys: Conf Ser 300(012):011. doi: 10.1088/1742-6596/300/1/012011 Google Scholar
  334. Thompson RI (1973) Conditions for carbon monoxide vibration–rotation LTE in late stars. ApJ 181:1039–1054. doi: 10.1086/152110 ADSCrossRefGoogle Scholar
  335. Tucci Maia M, Meléndez J, Ramírez I (2014) High precision abundances in the 16 Cyg binary system: a signature of the rocky core in the giant planet. ApJL 790:L25. doi: 10.1088/2041-8205/790/2/L25 CrossRefGoogle Scholar
  336. Umeda H, Nomoto K (2002) Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. ApJ 565:385–404. doi: 10.1086/323946
  337. Unsöld A (1955) Physik der Sternatmospharen, mit besonderer Berucksichtigung der Sonne. Springer, BerlinMATHGoogle Scholar
  338. van Regemorter H (1962) Rate of collisional excitation in stellar atmospheres. ApJ 136:906. doi: 10.1086/147445 ADSCrossRefGoogle Scholar
  339. van Rensbergen W, de Doncker E, Deridder G (1975) On the broadening and shift of spectral lines. Sol Phys 40:303–315. doi: 10.1007/BF00162377 ADSCrossRefGoogle Scholar
  340. Vidal CR, Cooper J, Smith EW (1970) Hydrogen Stark broadening calculations with the unified classical path theory. JQSRT 10:1011–1063. doi: 10.1016/0022-4073(70)90121-4 ADSCrossRefGoogle Scholar
  341. Vidal CR, Cooper J, Smith EW (1971) Unified theory calculations of Stark broadened hydrogen lines including lower state interactions. JQSRT 11:263–281. doi: 10.1016/0022-4073(71)90013-6 ADSCrossRefGoogle Scholar
  342. Vidal CR, Cooper J, Smith EW (1973) Hydrogen Stark-broadening tables. ApJS 25:37. doi: 10.1086/190264 ADSCrossRefGoogle Scholar
  343. Walton NA, Dubernet ML, Mason NJ, Piskunov N, Rixon GT, Vamdc Consortium (2011) VAMDC: the virtual atomic and molecular data center. In: ASP conference proceedings, astronomical society of the Pacific, San Francisco, vol 442, p 89Google Scholar
  344. Warner B (1968) Atomic oscillator strengths-I. Neutral silicon. MNRAS 139:1ADSCrossRefGoogle Scholar
  345. Wiedemann G, Ayres TR, Jennings DE, Saar SH (1994) Carbon monoxide fundamental bands in late-type stars. III. Chromosphere or CO-mosphere? ApJ 423:806. doi: 10.1086/173859
  346. Wood MP, Lawler JE, Sneden C, Cowan JJ (2013) Improved Ti II Log(gf) Values and abundance determinations in the photospheres of the Sun and metal-poor star HD 84937. ApJS 208:27. doi: 10.1088/0067-0049/208/2/27 ADSCrossRefGoogle Scholar
  347. Wood MP, Lawler JE, Den Hartog EA, Sneden C, Cowan JJ (2014) Improved V II Log(gf) values, hyperfine structure constants, and abundance determinations in the photospheres of the Sun and metal-poor star HD 84937. ApJS 214:18. doi: 10.1088/0067-0049/214/2/18 ADSCrossRefGoogle Scholar
  348. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. ApJS 101:181. doi: 10.1086/192237 ADSCrossRefGoogle Scholar
  349. Yu-Ran L (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonGoogle Scholar
  350. Zatsarinny O (2006) BSR: B-spline atomic R-matrix codes. Comput Phys Commun 174(4):273–356. doi: 10.1016/j.cpc.2005.10.006 ADSMATHCrossRefGoogle Scholar
  351. Zatsarinny O, Bartschat K (2005a) Benchmark calculations for electron collisions with \(\text{ Fe }^{+}\). Phys Rev A 72(2):020702. doi: 10.1103/PhysRevA.72.020702 ADSCrossRefGoogle Scholar
  352. Zatsarinny O, Bartschat K (2005b) Benchmark calculations for electron collisions with zinc atoms. Phys Rev A 71(2):022716. doi: 10.1103/PhysRevA.71.022716 ADSCrossRefGoogle Scholar
  353. Zatsarinny O, Bartschat K (2010) Electron collisions with copper atoms: elastic scattering and electron-impact excitation of the (3d10 4s) 2S - (3d10 4p) 2P resonance transition. Phys Rev A 82(6):062703. doi: 10.1103/PhysRevA.82.062703 ADSCrossRefGoogle Scholar
  354. Zatsarinny O, Bartschat K (2013) The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J Phys B: At Mol Opt Phys 46(11):112001. doi: 10.1088/0953-4075/46/11/112001 ADSCrossRefGoogle Scholar
  355. Zatsarinny O, Bartschat K, Gedeon S, Gedeon V, Lazur V, Nagy E (2009) Cross sections for electron scattering from magnesium. Phys Rev A 79(5):052709. doi: 10.1103/PhysRevA.79.052709 ADSCrossRefGoogle Scholar
  356. Zatsarinny O, Bartschat K, Suvorov V, Teubner PJO, Brunger MJ (2010) Electron-impact excitation of the (3d10 4s) \({2\text{ S }}_{1/2}\) - (3d9 4s2) \({2\text{ D }}_{5/2,3/2}\) transitions in copper atoms. Phys Rev A 81(6):062705. doi: 10.1103/PhysRevA.81.062705 ADSCrossRefGoogle Scholar
  357. Zener C (1932) Non-adiabatic crossing of energy levels. Proc R Soc London Ser A Math Phys Sci 137(833):696–702ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Theoretical Astrophysics, Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations