Advertisement

The legacy of Venus Express: highlights from the first European planetary mission to Venus

  • Pierre Drossart
  • Franck Montmessin
Review Article

Abstract

The ESA/Venus Express mission spent more than 8 years in orbit around Venus to extensively study its atmosphere, ionosphere and plasma environment and unveil new aspects of its surface. Extensive reviews of the work of Venus Express are underway, to cover in-depth studies of the new face of Venus revealed by Venus Express and ground-based concurrent observations. This paper intends to give a summarized and wide overview of some of the outstanding results in all the science areas studied by the mission. This paper will first review the main aspects of the mission and its instrumental payload. Then, a selection of results will be reviewed from the outermost layers interacting with the Solar wind, down to the surface of Venus. As Venus Express is already considered by space agencies as a pathfinder for the future of Venus exploration, perspectives for future missions will be given, which will have to study Venus not only from orbital view, but also down to the surface to solve the many remaining mysteries of the sister planet of the Earth.

Keywords

Planetary atmospheres Planetary surfaces Ionospheres  Space instrumentation 

Notes

Acknowledgments

The authors thank the Centre National d’Etudes Spatiales (CNES) and the European Space Agency (ESA) for supporting all the Venus Express investigations.

References

  1. Allen DA, Crawford JW (1984) Cloud structure on the dark side of Venus. Nature. doi: 10.1038/307222a0
  2. Barabash S et al (2007a) The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express Mission. Planetary and Space Science. doi: 10.1016/j.pss.2007.01.014
  3. Barabash S et al (2007b) The loss of ions from Venus through the plasma wake. Nature. doi: 10.1038/nature06434
  4. Barstow JK et al (2012) Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217:542ADSCrossRefGoogle Scholar
  5. Barth CA et al (1967) Ultraviolet emissions observed near Venus from Mariner V. Science 158:1675–1678ADSCrossRefGoogle Scholar
  6. Belyaev D et al (2008) First observations of \(\text{ SO }_{2}\) above Venus’ clouds by means of solar occultation in the infrared. J Geophys Res 113. doi: 10.1029/2008JE003143
  7. Belyaev D et al (2012) Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217:740–751ADSCrossRefGoogle Scholar
  8. Bertaux JL et al (2007) SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet Space Sci 55:1673–1700. doi: 10.1016/j.pss.2007.01.016 ADSCrossRefGoogle Scholar
  9. Bézard B, de Bergh C, Crisp D, Maillard JP (1990) The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345:508–511ADSCrossRefGoogle Scholar
  10. Bézard B, Tsang C, Carlson RW, Piccioni G, Marcq, E, Drossart P (2009) Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J Geophys Res 114:0B39Google Scholar
  11. Bézard B, Fedorova A, Bertaux JL, Rodin AV, Korablev O (2011) The 1.10- and 1.18-\(\upmu \text{ m }\) nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus 216:173ADSCrossRefGoogle Scholar
  12. Bullock MA, Grinspoon DH (1996) The stability of climate on Venus. J Geophys Res 101:7521ADSCrossRefGoogle Scholar
  13. Carlson RW et al (1991) Galileo infrared imaging spectroscopy measurements at Venus. Science 253:1541–1548ADSCrossRefGoogle Scholar
  14. Collinson GA et al (2012a) Short large-amplitude magnetic structures (SLAMS) at Venus. J Geophys Res A 117:10221CGoogle Scholar
  15. Collinson GA et al (2012b) Hot flow anomalies at Venus. J Geophys Res A 117:4204Google Scholar
  16. Connes P, Noxon JF, Traub WA, Carleton NP (1979) \(\text{ O }_{2}\) emission in the day and night airglow of Venus. Astrophys J Part 2 Lett Ed 233:L29–L32Google Scholar
  17. Cottini V et al (2012) Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217:561–569ADSCrossRefGoogle Scholar
  18. Delva M, Zhang TL, Volwerk M, Vörös Z, Pope SA (2008a) Proton cyclotron waves in the solar wind at Venus J Geophys Res E113:E00B06. doi: 10.1029/2008JE003148
  19. Delva M, Zhang TL, Volwerk M, Russell CT, Wei HY (2008b) Upstream proton cyclotron waves at Venus. Planet Space Sci 56:1293ADSCrossRefGoogle Scholar
  20. Delva M, Bertucci C, Volwerk M, Lundin R, Mazelle C, Romanelli N (2015) Upstream proton cyclotron waves at Venus near solar maximum. J Geophys Res A 120:344ADSCrossRefGoogle Scholar
  21. Drossart P et al (2007a) Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planet Space Sci 55:1653-167. doi: 10.1016/j.pss.2007.01.003
  22. Drossart P et al (2007b) A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450:641–645. doi: 10.1038/nature06140 ADSCrossRefGoogle Scholar
  23. Dubinin EM et al (2012) Bursty escape fluxes in plasma sheets of Mars and Venus. Geophys Res Lett 39. doi: 10.1029/2011GL049883
  24. Edberg NJT et al (2011) Atmospheric erosion of Venus during stormy space weather. J Geophys Res 116:A09308. doi: 10.1029/2011JA016749 ADSGoogle Scholar
  25. Encrenaz P et al (2012) HDO and \(\text{ SO }_{2}\) variability. Astron Astrophys 543. doi: 10.1051/0004-6361/201219419
  26. Encrenaz T, Moreno R, Moullet A, Lellouch E, Fouchet T (2015) Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet Space Sci 113:275ADSCrossRefGoogle Scholar
  27. Fedorov A et al (2011) Measurements of the ion escape rates from Venus for solar minimum. J Geophys Res 116:A07220. doi: 10.1029/2011JA016427 ADSGoogle Scholar
  28. Feldman PD, Moos HW, Clarke JT, Lane AL (1979) Identification of the UV nightglow from Venus. Nature 279:221ADSCrossRefGoogle Scholar
  29. Fegley B Jr et al (1997) Geochemistry of surface–atmosphere interactions on Venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. The University of Arizona Press, Tucson, pp 591–636Google Scholar
  30. Formisano V et al (2006) The planetary Fourier spectrometer (PFS) onboard the European Venus Express mission. Planet Space Sci 54:1298–1314. doi: 10.1016/j.pss.2006.04.033 ADSCrossRefGoogle Scholar
  31. Galli A et al. (2008) Tailward flow of energetic neutral atoms observed at Venus. J Geophys Res 113:E00B15. doi: 10.1029/2008JE003096
  32. Garate-Lopez I, García Muñoz A, Hueso R, Sánchez-Lavega A (2015) Instantaneous three-dimensional thermal structure of the South Polar Vortex of Venus. Icarus 245:16ADSCrossRefGoogle Scholar
  33. Garcia RF, Drossart P, Piccioni G, López-Valverde M, Occhipinti G (2009) Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J Geophys Res E 114:0B32Google Scholar
  34. Garcia-Munoz A, Mills FM, Piccioni G, Drossart P (2009) The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc Natl Acad Sci 106(4):985–988. doi: 10.1073/pnas.0808091106 ADSCrossRefGoogle Scholar
  35. Gérard JC, Cox C, Saglam A, Bertaux JL, Villard E, Nehmé C (2008) Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J Geophys Res 113:E00B03. doi: 10.1029/2008JE003078
  36. Gérard JC et al (2009) Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express. J Geophys Res 114:E00B44Google Scholar
  37. Gérard JC, Soret L, Piccioni G, Drossart P (2014) Latitudinal structure of the Venus O2 infrared airglow: a signature of small-scale dynamical processes in the upper atmosphere. Icarus 236:92–103. doi: 10.1016/j.icarus.2014.03.028
  38. Grassi D et al (2010) Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J Geophys Res 115:E09007. doi: 10.1029/2009JE003553 ADSGoogle Scholar
  39. Grassi D et al (2014) The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J Geophys Res Planets 119:837–849. doi: 10.1002/2013JE004586 ADSCrossRefGoogle Scholar
  40. Grinspoon D et al (1993) Probing Venus’s cloud structure with Galileo NIMS. Planet Space Sci 41(7):515–542ADSCrossRefGoogle Scholar
  41. Gurnett D et al (2001) Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature 409(6818):313–315ADSCrossRefGoogle Scholar
  42. Hartogh P (2006) Submm wave sounding of the Venusian atmosphere. In: European Planetary Science Congress 2006. Berlin, Germany, 18–22 September 2006. p 378Google Scholar
  43. Haus R, Kappel D, Arnold G (2015) Lower atmosphere minor gas abundances as retrieved from Venus Express VIRTIS-M-IR data at \(2.3\upmu \text{ m }\). Planet Space Sci 105:159–174. doi: 10.1016/j.pss.2014.11.020 ADSCrossRefGoogle Scholar
  44. Häusler B et al (2006) Radio science investigations by VeRa onboard the Venus Express spacecraft. Planet Space Sci 54(13—-14):1315–1335. doi: 10.1016/j.pss.2006.04.032 ADSCrossRefGoogle Scholar
  45. Hueso R, Peralta J, Sánchez-Lavega A (2012) Assessing the long-term variability of Venus wind at cloud level from VIRTIS-Venus Express. Icarus 217:585ADSCrossRefGoogle Scholar
  46. Ignatiev NI et al (2009) Altimetry of the Venus cloud tops from the Venus Express observations. J Geophys Res 114(E5). doi: 10.1029/2008JE003320
  47. Khatuntsev IV et al (2013) Cloud level winds from the Venus Express monitoring camera imaging. Icarus 226:140ADSCrossRefGoogle Scholar
  48. Kliore AJ, Moroz VI, Keating GM (1985) The Venus international reference atmosphere. In: Kliore AJ, Moroz VI, Keating GM (eds) Adv Space Res 5(11)Google Scholar
  49. Knollenberg RG, Hunten DM (1980) The microphysics of the clouds of Venus—results of the Pioneer Venus particle size spectrometer experiment. J Geophys Res 85:8039ADSCrossRefGoogle Scholar
  50. Lecacheux J, Drossart P, Laques P, Deladerriere F, Colas F (1993) Detection of the surface of Venus at 1.0 micrometer from ground-based observations. Planet Space Sci 41:543–549ADSCrossRefGoogle Scholar
  51. Lundin R, Barabash S, Futaana Y, Holmström M, Perez-De-Tejada H, Sauvaud JA (2013) A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophys Res Lett 40:1273ADSCrossRefGoogle Scholar
  52. Luz D et al (2011) Venus’s Southern Polar Vortex reveals precessing circulation. Science 332:5CrossRefGoogle Scholar
  53. Mahieux A, Vandaele AC, Neefs E, Robert S, Wilquet V, Drummond R, Federova A, Bertaux JL (2010) Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: retrieval technique. J Geophys Res 115:E12014. doi: 10.1029/2010JE003589
  54. Mahieux A, Vandaele AC, Robert S, Wilquet V, Drummond R, Montmessin F, Bertaux JL (2012) Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: carbon dioxide measurements at the Venus terminator. J Geophys Res 117:E07001. doi: 10.1029/2012JE004058
  55. Mahieux A et al (2015) Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet Space Sci 113–114:347–358. doi: 10.1016/j.pss.2014.12.020 CrossRefGoogle Scholar
  56. Marcq E, Bézard,B, Drossart P, Piccioni G, Reess JM, Henry F (2008) A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H. J Geophys Res E113:0B07MGoogle Scholar
  57. Marcq E et al (2011) An investigation of the \(\text{ SO }_{2}\) content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211:58–69ADSCrossRefGoogle Scholar
  58. Marcq E et al (2013) Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nature Geosci 6:25–28ADSGoogle Scholar
  59. Markiewicz WJ et al (2007) Venus monitoring camera for Venus Express. Planet Space Sci 55(12):1701–1711. doi: 10.1016/j.pss.2007.01.004 ADSCrossRefGoogle Scholar
  60. Masunaga KY et al (2011) \(\text{ O }^{+}\) outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy \(\text{ O }^{+}\) ions around the terminator. J Geophys Res 116:A09326. doi: 10.1029/2011JA016705 ADSGoogle Scholar
  61. Masunaga KY et al (2013) Dependence of \(\text{ O }^{+}\) escape rate from the Venusian upper atmosphere on IMF directions: VEX: \(\text{ O }^{+}\) escape rates and IMF directions. Geophys Res Lett 40(9):1682–1685. doi: 10.1002/grl.50392 ADSCrossRefGoogle Scholar
  62. McGouldrick K, Baines KH, Momary TW, Grinspoon DH (2008), Venus Express/VIRTIS observations of middle and lower cloud variability and implications for dynamics. J Geophys Res 113:E00B14. doi: 10.1029/2008JE003113
  63. McGouldrick K, Momary TW, Baines KH, Grinspoon DH (2012) Quantification of middle and lower cloud variability and mesoscale dynamics from Venus Express/VIRTIS observations at \(1.74\upmu \text{ m }\). Icarus 217(2):615–628. doi: 10.1016/j.icarus.2011.07.009
  64. Migliorini A, Grassi D, Montabone L, Lebonnois S, Drossart P, Piccioni G (2012) Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus 217(2):640–647. doi: 10.1016/j.icarus.2011.07.013 ADSCrossRefGoogle Scholar
  65. Montmessin F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85. doi: 10.1016/j.icarus.2011.08.010 ADSCrossRefGoogle Scholar
  66. Mueller NT, Helbert J, Erard S, Piccioni G, Drossart P (2012) Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus 217:474ADSCrossRefGoogle Scholar
  67. Nordström T, Stenberg G, Nilsson H, Barabash S, Zhang TL (2013) Venus ion outflow estimates at solar minimum: influence of reference frames and disturbed Solar wind conditions: Venus ion outflow estimates. J Geophys Res Space Phys 118(6):3592–3601. doi: 10.1002/jgra.50305 ADSCrossRefGoogle Scholar
  68. Peralta J, Luz D, Berry DL, Tsang C, Sánchez-Lavega CC, Hueso R, Piccioni G, Drossart P (2012) Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus 220:958ADSCrossRefGoogle Scholar
  69. Petrova EV, Shalygina OS, Markiewicz WJ (2015a) UV contrasts and microphysical properties of the upper clouds of Venus from the UV and NIR VMC/VEx images. Icarus 260:190ADSCrossRefGoogle Scholar
  70. Petrova EV, Shalygina OS, Markiewicz WJ (2015b) The VMC/VEx photometry at small phase angles: glory and the physical properties of particles in the upper cloud layer of Venus. Planet Space Sci 113:120ADSCrossRefGoogle Scholar
  71. Piccialli A et al (2012) Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217(2):669–681. doi: 10.1016/j.icarus.2011.07.016 ADSMathSciNetCrossRefGoogle Scholar
  72. Piccialli A et al (2014) High latitude gravity waves at the Venus cloud tops as observed by the Venus monitoring camera on board Venus Express. Icarus 227:94ADSCrossRefGoogle Scholar
  73. Piccialli A et al (2015) Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet Space Sci 113–114:321–335. doi: 10.1016/j.pss.2014.12.009 CrossRefGoogle Scholar
  74. Piccioni G et al (2008) First detection of hydroxyl in the atmosphere of Venus. Astron Astrophys 483:29–33. doi: 10.1051/0004-6361:20080976
  75. Piccioni G et al (2009) Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J Geophys Res 114. doi: 10.1029/2008JE003133
  76. Royer E, Montmessin F, Bertaux JL (2010) NO emissions as observed by SPICAV during stellar occultations. Planet Space Sci 58:1314–1326. doi: 10.1016/j.pss.2010.05.015 ADSCrossRefGoogle Scholar
  77. Russell CT (1991) Venus lightning. Space Sci Rev 55:317ADSGoogle Scholar
  78. Russell CT, Zhang TL, Delva M, Magnes W, Strangeway RJ, Wei HY (2007) Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450:661ADSCrossRefGoogle Scholar
  79. Russell CT, Strangeway RJ, Daniels JTM, Zhang TL, Wei HY (2011) Venus lightning: comparison with terrestrial lightning. Planet Space Sci 59:965ADSCrossRefGoogle Scholar
  80. Sánchez-Lavega A et al (2008) Variable winds on Venus mapped in three dimensions. Geophys Res Lett 35:L13204. doi: 10.1029/2008GL033817 ADSCrossRefGoogle Scholar
  81. Sandor BJ et al (2010) Sulfur chemistry in the Venus mesosphere from \(\text{ SO }_{2}\) and SO microwave spectra. Icarus 208(1):49–60ADSMathSciNetCrossRefGoogle Scholar
  82. Satoh T et al. (2009) Cloud structure in Venus middle-to-lower atmosphere as inferred from VEX/VIRTIS 1.74 mm data. J Geophys Res 114:E00B37. doi: 10.1029/2008JE003184
  83. Shalygin EV et al (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42:4762ADSCrossRefGoogle Scholar
  84. Shalygina OS, Petrova EV, Markiewicz WJ, Ignatiev NI, Shalygin EV (2015) Optical properties of the Venus upper clouds from the data obtained by Venus monitoring camera on-board the Venus Express. Planet Space Sci 113:135ADSCrossRefGoogle Scholar
  85. Singh U et al (2014) Coherent Doppler Lidar for wind and cloud measurements on Venus from an orbiting or floating/flying platform. In: 40th COSPAR scientific assembly. Held 2–10 August 2014, in Moscow, Russia, Abstract B0.7-30-14Google Scholar
  86. Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data. Science 328(5978):605–608ADSCrossRefGoogle Scholar
  87. Soret L, Gérard JC, Piccioni G, Drossart P (2014) Time variations of O2(a1\(\Delta \)) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237:306ADSCrossRefGoogle Scholar
  88. Stenberg G, Nilsson H, Barabash S, Holmström M, Futaana Y (2014) Atmospheric escape and solar wind precipitation—a comparison between Mars and Venus. In: 40th COSPAR scientific assembly. 2–10 August 2014, Moscow, Russia, Abstract C3.2-21-14Google Scholar
  89. Stewart AI, Barth CA (1979) Ultraviolet night airglow of Venus. Science 205:59–62ADSCrossRefGoogle Scholar
  90. Stewart AI, Gérard JC, Rusch D, Bougher S (1980) Morphology of the Venus ultraviolet night airglow. J Geophys Res 85:7861–7870ADSCrossRefGoogle Scholar
  91. Stiepen A, Soret L, Gérard JC, Cox C, Bertaux JL (2012) The vertical distribution of the Venus NO nightglow: limb profiles inversion and one- dimensional modeling. Icarus 220:981–989ADSCrossRefGoogle Scholar
  92. Stiepen A, Gérard JC, Dumont M, Cox C, Bertaux JL (2013) Venus nitric oxide nightglow mapping from SPICAV Nadir observations. Icarus 226(1):428–436. doi: 10.1016/j.icarus.2013.05.031 ADSCrossRefGoogle Scholar
  93. Svedhem H et al (2007) Venus Express—the first European mission to Venus. Planet Space Sci 55:1636–1652. doi: 10.1016/j.pss.2007.01.01334 ADSCrossRefGoogle Scholar
  94. Svedhem H, Titov D, Wilson C (2012) Present status and future of Venus Express and results from atmospheric drag measurements. EGU Gen Assemb 14:12382Google Scholar
  95. Tellmann S, Pätzold M, Häusler B, Bird MK, Tyler GL (2009) Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J Geophys Res 114:E00B36. doi: 10.1029/2008JE003204
  96. Tellmann S, Häusler B, Hinson D, Tyler GL, Andert TP, Bird MK, Imamura T, Pätzold M, Remus S (2012) Small-scale temperature fluctuations seen by the VeRa radio science experiment on Venus Express. Icarus 221(2):471–480. doi: 10.1016/j.icarus.2012.08.023 ADSCrossRefGoogle Scholar
  97. Tsang CCC, Wilson CF, Barstow JK, Irwin PGJ, Taylor FW et al (2010) Correlations between cloud thickness and sub-cloud water abundance on Venus. Geophys Res Lett 37(2):5. doi: 10.1029/2009GL041770 CrossRefGoogle Scholar
  98. Vandaele AC et al (2008) Composition of the Venus mesosphere measured by solar occultation at infrared on board Venus Express. J Geophys Res 113(13). doi: 10.1029/2008JE003140
  99. Wilson CF et al (2008) Evidence for anomalous cloud particles at the poles of Venus. J Geophys Res 113:E00B13. doi: 10.1029/2008JE003108
  100. Zhang TL et al (2006) Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet Space Sci 54:1336–1343. doi: 10.1016/j.pss.2006.04.018 ADSCrossRefGoogle Scholar
  101. Zhang TL et al (2012) Magnetic reconnection in the near Venusian magnetotail. Science 336:567ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LESIA, Observatoire de Paris, PSL-Research University, CNRS, Univ. Pierre et Marie Curie Paris 06, Sorbonne Université, Univ. Paris-Diderot, Sorbonne Paris-CitéMeudonFrance
  2. 2.LATMOS, Université Versailles Saint-Quentin, CNRS, IPSL, Univ. Pierre et Marie Curie, Paris 06, Sorbonne UniversitéGuyancourtFrance

Personalised recommendations