Spontaneous magnetic reconnection

Collisionless reconnection and its potential astrophysical relevance
  • R. A. Treumann
  • W. Baumjohann
Review Article


The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.


Collisionless reconnection Magnetic turbulence Relativistic reconnection Acceleration Lepton exhaust and jets Turbulent current sheets Power law distributions 



We are indebted to the editors of The Astronomy and Astrophysics Review for the invitation to this recollection. RT thanks Martin Huber for many valuable discussions and, in particular, for his continuous encouragement in the writing. Andrea Fischer and Irmela Schweizer, ISSI librarians, helped accessing the literature. We thank Saliba F. Saliba, ISSI-technical administrator, for technical support. The interest of the ISSI directorate in this research is also acknowledged.


  1. Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Behera B, Beilicke M, Benbow W, Berge D, Bernlöhr K et al (2007) An exceptional very high energy Gamma-Ray flare of PKS 2155–304. Astrophys J Lett 664:71. doi: 10.1086/520635
  2. Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ, Robert P (2009) Univeersality of solar-wind turbulent spectrum from MHD to electron scales. Phys Rev Lett 103:165003. doi: 10.1103/PhysRevLett.103.165003 ADSCrossRefGoogle Scholar
  3. Alexandrova O, Chen CHK, Sorriso-Valvo L, Horbury T, Bale SD (2013) Solar wind turbulence and the role of ion instabilities. Space Sci Rev 178:101–139. doi: 10.1007/s11214-013-0004-8 ADSCrossRefGoogle Scholar
  4. Aunai N, Hesse M, Kuznetsova M (2013a) Electron nongyrotropy in the context of collisionless magnetic reconnection. Phys Plasmas 20:092903. doi: 10.1063/1.4820953
  5. Aunai N, Hesse M, Black C, Evans R, Kuznetsova M (2013b) Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers. Phys Plasmas 20:042901. doi: 10.1063/1.4795727
  6. Baumjohann W, Treumann RA (1996) Basic space plasma physics. Imperial College Press, LondonCrossRefGoogle Scholar
  7. Beskin VS, Balogh A, Falanga M, Lyutikov M, Mereghetti S, Piran S, Treumann RA (eds) (2015) The strongest magnetic fields in the universe, ISSI Space Sci Series SSSI-54. Springer, New YorkGoogle Scholar
  8. Bessho N, Bhattacharjee A (2005) Collisionless reconnection in an electron-positron plasma. Phys Rev Lett 95:245001. doi: 10.1103/PhysRevLett.95.245001 ADSCrossRefGoogle Scholar
  9. Bessho N, Chen L-J, Shuster JR, Wang S (2014) Electron distribution functions in the electron diffusion region of magnetic reconnection: physics behind the fine structures. Geophys Res Lett 41:8688–8695. doi: 10.1002/2014GL062034 ADSCrossRefGoogle Scholar
  10. Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge UP, CambridgezbMATHCrossRefGoogle Scholar
  11. Biskamp D (2005) Magnetic reconnection in plasmas. Cambridge UP, CambridgeGoogle Scholar
  12. Bohm D (1949) The characteristics of electrical discharges in magnetic fields. In: Guthrie A, Wakerling RK (eds) Vacuum equipment and techniques. McGraw-Hill, New YorkGoogle Scholar
  13. Browning P, Lazarian A (2013) Notes on magnetohydrodynamics of magnetic reconnection in turbulent media. Space Sci Rev 178:325–355. doi: 10.1007/s11214-013-0022-6 ADSCrossRefGoogle Scholar
  14. Büchner J (2007) Astrophysical reconnection and collisionless dissipation. Plasma Phys Controll Fusion 49:325. doi: 10.1088/0741-3335/49/12B/S30 ADSCrossRefGoogle Scholar
  15. Büchner J, Elkina N (2005) Vlasov code simulation of anomalous resistivity. Space Sci Rev 121:237. doi: 10.1007/s11214-006-6542-6 ADSCrossRefGoogle Scholar
  16. Buneman O (1958) Instability, turbulence, and conductivity in current-carrying plasma. Phys Rev Lett 1:8–9. doi: 10.1103/PhysRevLett.1.8 ADSCrossRefGoogle Scholar
  17. Buneman O (1959) Dissipation of currents in ionized media. Phys Rev 115:503–517. doi: 10.1103/PhysRev.115.503 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. Bykov AM, Treumann RA (2011) Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks. Astron Astrophys Rev 19:42. doi: 10.1007/s00159-011-0042-8 ADSCrossRefGoogle Scholar
  19. Cattell CA, Crumley J, Dombeck J, Wygant JR, Mozer FS (2002) Polar observations of solitary waves at Earht’s magnetopause. Geophys Res Lett 29:1065. doi: 10.1029/2001GL014046 ADSCrossRefGoogle Scholar
  20. Cassak PA, Shay MA (2012) Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset. Space Sci Rev 172:283–302. doi: 10.1007/s11214-011-9755-2 ADSCrossRefGoogle Scholar
  21. Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014a) Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys Plasmas 21:056501. doi: 10.1063/1.4872024 ADSCrossRefGoogle Scholar
  22. Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014b) Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys J 782:104. doi: 10.1088/0004-637X/782/2/104 ADSCrossRefGoogle Scholar
  23. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, OxfordzbMATHGoogle Scholar
  24. Che H, Drake JF, Swisdak M (2011) A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474:184–187. doi: 10.1038/nature10091 ADSCrossRefGoogle Scholar
  25. Che H, Drake JF, Swisdak M, Goldstein ML (2013) The adiabatic phase mixing and heating of electrons in Buneman turbulence. Phys Plasmas 20:061205. doi: 10.1063/1.4811137 ADSCrossRefGoogle Scholar
  26. Chen X, Chatterjee R, Fossati G, Pohl M (2014) Connection between magnetic field amplification and blazar flares. Int J Mod Phys Conf Series 28:1460180. doi: 10.1142/S201019451460180X CrossRefGoogle Scholar
  27. Consolini G, Grandioso S, Yordanova E, Marcucci MF, Pallocchia G (2015) Statistical and scaling features of fluctuations in the dissipation range during a reconnection event. Astrophys J 804:19. doi: 10.1088/0004-637X/804/1/19 ADSCrossRefGoogle Scholar
  28. Dahlin JT, Drake JF, Swisdak M (2014) The mechanism of electron heating and acceleration during magnetic reconnection. Phys Plasmas 21:092304. doi: 10.1063/1.4894484 ADSCrossRefGoogle Scholar
  29. Dai Y, Ding MD, Guo Y (2013) Production of the extreme-ultraviolet late phase of an X class flare in a three-stage magnetic reconnection process. Astrophys J Lett 773:L21. doi: 10.1088/2041-8205/773/2/L21 ADSCrossRefGoogle Scholar
  30. Daughton W, Roytershteyn V (2012) Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes. Space Sci Rev 172:271–282. doi: 10.1007/s11214-011-9766-z ADSCrossRefGoogle Scholar
  31. Daughton W, Roytershteyn V, Karimabadi H, Yin L, Albright BJ, Bergen B, Bowers KJ (2011) Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys 7:539–542. doi: 10.1038/NPHYS1965 ADSCrossRefGoogle Scholar
  32. Daughton W, Nakamura TKM, Karimabadi H, Roytershteyn V, Loring B (2014) Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys Plasmas 21:052307. doi: 10.1063/1.4875730 ADSCrossRefGoogle Scholar
  33. DeVore CR, Antiochos SK, Black CE, Harding AK, Kalapotharakos C, Kazanas D, Timokhin AN (2015) A model for the electrically charged current sheet of a pulsar. Astrophys J 801:109. doi: 10.1088/0004-637X/801/2/109 ADSCrossRefGoogle Scholar
  34. Dieckmann ME, Ahmed H, Doria D, Sarri G, Walder R, Folini D, Bret A, Ynnerman A, Borghesi M (2015) A thin-shell instability in collisionless plasma. Phys Rev E (in press)Google Scholar
  35. Ding J, Yuan F, Liang E (2010) Electron heating and acceleration by magnetic reconnection in hot accretion flows. Astrophys J 708:1545–1550. doi: 10.1088/0004-637X/708/2/1545 ADSCrossRefGoogle Scholar
  36. Divin A, Lapenta G, Markidis S, Semenov VS, Erkaev NV, Korovinskiy DB, Biernat HK (2012) Scaling of the inner electron diffusion region in collisionless magnetic reconnection. J Geophys Res 117:A06217. doi: 10.1029/2011JA017464 ADSGoogle Scholar
  37. Drake JF, Swisdak M, Cattell M, Shay MA, Rogers BN, Zeiler A (2003) Formation of electron holes and particle energization during magnetic reconnection. Science 299:873–877. doi: 10.1126/science.1080333 ADSCrossRefGoogle Scholar
  38. Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94:095001. doi: 10.1103/PhysRevLett.94.095001 ADSCrossRefGoogle Scholar
  39. Drake JF, Swisdak M, Che H, Shay MA (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443:553–556. doi: 10.1038/nature05116 ADSCrossRefGoogle Scholar
  40. Drake JF, Swisdak M, Fermo R (2013) The power law spectra of energetic particles during multi-island magnetic reconnection. Astrophys J Lett 763:L5. doi: 10.1088/2041-8205/763/1/L5 ADSCrossRefGoogle Scholar
  41. Eastwood JP, Phan TD, Bale SD, Tjulin A (2009) Observations of turbulence generated by magnetic reconnection. Phys Rev Lett 102:035001. doi: 10.1103/PhysRevLett.102.035001 ADSCrossRefGoogle Scholar
  42. Egedal J, Øieroset M, Fox W, Lin RP (2005) In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the earth’s magnetotail. Phys Rev Lett 94:025006. doi: 10.1103/PhysRevLett.94.025006 ADSCrossRefGoogle Scholar
  43. Egedal J, Daughton W, Drake JF, Katz N, Lê A (2009) Formation of a localized acceleration potential during magnetic reconnection with a guide field. Phys Plasmas 16:050701. doi: 10.1063/1.3130732 ADSCrossRefGoogle Scholar
  44. Egedal J, Daughton W, Le A (2012) Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Phys 8:321–324. doi: 10.1038/NPHYS2249 ADSCrossRefGoogle Scholar
  45. Egedal J, Daughton W, Le A, Borg AL (2015) Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within exhausts from magnetic reconnection. arXiv:1504.08045v1 [physics.plasm-ph]
  46. Frey HU (2007) Localizes aurora beyond the auroral oval. Rev Geophys 45:RG1003. doi: 10.1029/2005RG000174 ADSCrossRefGoogle Scholar
  47. Frey HU, Mende SB, Immel TJ, Fuselier SA, Claflin ES, Gérard J-C, Østgaard N (2002) Proton aurora in the cusp. J Geophys Res 107:1091. doi: 10.1029/2001JA900161 CrossRefGoogle Scholar
  48. Frey HU, Phan TD, Fuselier SA, Mende SB (2003) Continuous magnetic reconnection at earth’s magnetopause. Nature 426:533–537. doi: 10.1038/nature02084 ADSCrossRefGoogle Scholar
  49. Giannios D (2013) Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. Mon Notic R Astron Soc 431:355–363. doi: 10.1111/j.1745-3933.2010.00925.x ADSCrossRefGoogle Scholar
  50. Giovanelli RG (1946) A theory of chromospheric flares. Nature 158:81–82. doi: 10.1038/15081a0 ADSCrossRefGoogle Scholar
  51. Goldman MV, Newman DL, Lapenta G (2015) What can we learn about magnetotail reconnection from 2D PIC Harris-sheet simulations? Space Sci Rev. doi: 10.1007/s11214-015-0154-y
  52. Goldstein ML, Roberts DA, Matthaeus WH (1995) Magnetohydrodynamic turbulence in the solar wind. Ann Rev Astron Astrophys 33:283–326. doi: 10.1146/annarev.aa.33.090195.001435 ADSCrossRefGoogle Scholar
  53. Gosling JT, Phan TD (2013) Magnetic reconnection in the solar wind at current sheets associated with extremely small field shear angles. Astrophys J Lett 763:L39. doi: 10.1088/2041-8205/763/2/L39 ADSCrossRefGoogle Scholar
  54. Guo F, Li H, Daughton W, Liu Y-H (2014a) Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys Rev Lett 113:155005. doi: 10.1103/PhysRevLett.113.155005
  55. Guo F, Liu Y-H, Daughton W, Li H (2014b) Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys J 806:167. doi: 10.1088/0004-637X/806/2/167
  56. Hawley JF, Fendt C, Hardcastle M, Nokhrina E, Tchekhovskoy A (2015) Disks and jets. In: Beskin VS et al (eds) The strongest magnetic fields in the universe, Chapter 13. ISSI Space Sci Series SSSI-54. Springer, New York. doi: 10.1007/s11214-015-0174-7
  57. Hesse M, Schindler K, Birn J, Kuznetsova M (1999) The diffusion region in collisionless magnetic reconnection. Phys Plasmas 6:1781–1795. doi: 10.1063/1.873436 ADSMathSciNetCrossRefGoogle Scholar
  58. Hesse M, Kuznetsova M, Hoshino M (2002) The structure of the dissipation region for component reconnection: particle simulations. Geophys Res Lett 29:1563–1566. doi: 10.1029/2001GL014714 ADSCrossRefGoogle Scholar
  59. Hesse M, Zenitani S, Klimas A (2008) The structure of the electron outflow jet in collisionless magnetic reconnection. Phys Plasmas 15:112102. doi: 10.1063/1.3006341 ADSCrossRefGoogle Scholar
  60. Hesse M, Aunai N, Zenitani S, Kuznetsova M, Birn J (2013) Aspects of collisionless magnetic reconnection in asymmetric systems. Phys Plasmas 20:0612107. doi: 10.1063/1.4811467 CrossRefGoogle Scholar
  61. Hesse M, Aunai N, Sibeck D, Birn J (2014) On the electron diffusion region in planar, asymmetric systems. Geophys Res Lett 41:8673–8680. doi: 10.1002/2014GL061586 ADSCrossRefGoogle Scholar
  62. Higashimori K, Yokoi N, Hoshino M (2013) Explosive turbulent magnetic reconnection. Phys Rev Lett 110:255001. doi: 10.1103/PhysRevLett.110.255001 ADSCrossRefGoogle Scholar
  63. Hoh FC (1966) Stability of sheet pinch. Phys Fluids 9:277–284. doi: 10.1063/1.1761670 ADSCrossRefGoogle Scholar
  64. Hoshino M, Lyubarsky Y (2015) Relativistic reconnection and particle acceleration. Space Sci Rev 173:521–533. doi: 10.1007/s11214-012-9931-z ADSCrossRefGoogle Scholar
  65. Hoshino M, Higashimori K (2015) Generation of Alfvénic waves and turbulence in reconnection jets. J Geophys Res 120:3715–3727. doi: 10.1002/2014JA020520 CrossRefGoogle Scholar
  66. Huang C, Lu Q, Wang S (2010) The mechanism of electron acceleration in antiparallel and guide field magnetic reconnection. Phys Plasmas 17:07306. doi: 10.1063/1.3457930 Google Scholar
  67. Huang C-Y, Wang D-X, Wang J-Z, Wang Z-Y (2013) A magnetic reconnection model for quasi-periodic oscillations in black hole systems. Res Astron Astrophys 13:705–718. doi: 10.1088/1674-4527/13/6/010 ADSCrossRefGoogle Scholar
  68. Jara-Almonte J, Daughton W, Ji H (2014) Debye scale turbulence within the electron diffusion layer during magnetic reconnection. Phys Plasmas 21:032114. doi: 10.1063/1.4867868 ADSCrossRefGoogle Scholar
  69. Jaroschek CH, Treumann RA, Lesch H, Scholer M (2004a) Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys Plasmas 11:1151. doi: 10.1063/1.1644814 ADSCrossRefGoogle Scholar
  70. Jaroschek CH, Hoshino M (2009) Radiation-dominated relativistic current sheets. Phys Rev Lett 103:075002. doi: 10.1103/PhysRevLett.103.075002 ADSCrossRefGoogle Scholar
  71. Jaroschek CH, Lesch H, Treumann RA (2004b) Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys J Lett 605:L9–L12. doi: 10.1086/420767 ADSCrossRefGoogle Scholar
  72. Jaroschek CH, Hoshino M, Lesch H, Treumann RA (2008) Stochastic particle acceleration by the forced interaction of relativistic current sheets. Adv Space Res 41:481–490. doi: 10.1016/j.asr.2007.07.001 ADSCrossRefGoogle Scholar
  73. Kagan D, Miloslavljević Spitkovsky A (2013) A flux rope network and particle accelertion in three-dimensional relativistic magnetic reconnection. Astrophys J 774:41. doi: 10.1088/0004-637X/774/1/41 ADSCrossRefGoogle Scholar
  74. Kagan D, Sironi L, Cerutti B, Giannios D (2015) Relativistic magnetic reconnection in pair plasmas and its astrophysical application. Space Sci Rev. doi: 10.1007/s11214-014-0132-9
  75. Karimabadi H, Lazarian A (2013) Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys Plasmas 20:112102. doi: 10.1063/1.4828395 ADSCrossRefGoogle Scholar
  76. Karimabadi H, Dorelli J, Roytershteyn V, Daughton W, Chacón L (2011) Flux pileup in collisionless magnetic reconnection: bursty interaction of large flux ropes. Phys Rev Lett 107:025002. doi: 10.1103/PhysRevLett.107.025002 ADSCrossRefGoogle Scholar
  77. Karimabadi H, Roytershteyn V, Daughton W, Liu Y-H (2013a) Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci Rev 178:307–323. doi: 10.1007/s11214-013-0021-7 ADSCrossRefGoogle Scholar
  78. Karimabadi H, Roytershteyn V, Wan M, Mathaeus WH, Daughton W, Wu P, Shay M, Loring B, Borovsky J, Leonardis E, Chapman SC, Nakamura TKM (2013b) Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys Plasmas 20:012303. doi: 10.1063/1.4773205 ADSCrossRefGoogle Scholar
  79. Karimabadi H, Roytershteyn V, Vu HX, Omelchenko YA, Scudder J, Daughton W, Dimmock A, Nykyri K, Wan M, Sibeck D, Tatineni T, Majumdas A, Loring B, Geveci B (2014) The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys Plasmas 21:062308. doi: 10.1063/1.4882875 ADSCrossRefGoogle Scholar
  80. Karlicky M (2014) Solar flares: radio and S-ray signatures of magnetic reconnection processes. Rev Astron Astrophys 14:753–772. doi: 10.1088/1674-4527/14/7/002 ADSGoogle Scholar
  81. Khotyaintsev YV, Vaivads A, André M, Fujimoto M, Retinó A, Owen CJ (2010) Observations of slow electron holes at a magnetic reconnection site. Phys Rev Lett 105:165002. doi: 10.1103/PhysRevLett.105.165002 ADSCrossRefGoogle Scholar
  82. Klimas A (2015) New expression for collisionless magnetic reconnection rate. Phys Plasmas 22:042901. doi: 10.1063/1.4917068 ADSCrossRefGoogle Scholar
  83. Königl A, Romanova MM, Lovelace RVE (2011) Are the outflows in FU Orionis systems driven by the stellar magnetic field? Mon Notic R Astron Soc 416:757–766. doi: 10.1111/j.1365-2966.2011.19098.x ADSGoogle Scholar
  84. Krucker S, Hudson HS, Glesener L, White SM, Masuda S, Wuelser J-P, Lin RP (2010) Measurements of the coronal acceleration region of a solar flare. Astrophys J 714:1108. doi: 10.1088/0004-637X/714/2/1108 ADSCrossRefGoogle Scholar
  85. Kusenko A (2013) Cosmic connections: from cosmic rays to gamma rays, cosmic backgrounds and magnetic fields. Mod Phys Lett A 28:1340001. doi: 10.1142/S0217732313400014 ADSMathSciNetCrossRefGoogle Scholar
  86. Lazarian A (2014) Reconnection diffusion in turbulent fluids and its implications for star formation. Space Sci Rev 181:1–59. doi: 10.1007/s11214-013-0031-5 ADSCrossRefGoogle Scholar
  87. Lazarian A, Eyink GL, Vishniac ET (2012) Relation of astrophysical turbulence and magnetic reconnection. Phys Plasmas 19:012105. doi: 10.1063/1.3672516 ADSCrossRefGoogle Scholar
  88. Lazarian A, Eyink GL, Vishniac ET, Kowal G (2014) Reconnection in turbulent astrophysical fluids. In: Pogorelov N, Audit E, Zank GP (eds) ASTRONUM2013, ASP Conf Ser Vol 488:23 San Francisco: AstronSoc Pacific. arXiv:1408.3134v1 [astro-ph.SR]
  89. Le A, Egedal J, Daughton W, Fox W, Katz N (2009) Equations of state for collisionless guide-field reconnection. Phys Rev Lett 102:085001. doi: 10.1103/PhysRevLett.102.085001 ADSCrossRefGoogle Scholar
  90. Le A, Egedal J, Ohia O, Daughton W, Karimabadi H, Lukin VS (2013) Regimes of the electron diffusion region in magnetic reconnection. Phys Rev Lett 110:135004. doi: 10.1103/PhysRevLett.110.135004 ADSCrossRefGoogle Scholar
  91. Le A, Egedal J, Ng J, Karimabadi H, Scudder J, Roytershteyn V, Daughton W (2014) Current sheets and pressure anisotropy in the reconnection exhaust. Phys Plasmas 21:012103. doi: 10.1063/1.4861871 ADSCrossRefGoogle Scholar
  92. Le A, Egedal J, Daughton W (2015) Theoretical model for electron heating resulting from magnetic reconnection. Phys Rev Lett (submitted)Google Scholar
  93. Leonardis E, Chapman SC, Daughton W, Roytershteyn V, Karimabadi H (2013) Identification of intermittent multi-fractal turbulence in fully kinetic simulations of magnetic reconnection. Phys Rev Lett 110:205002. doi: 10.1103/PhysRevLett.110.205002 ADSCrossRefGoogle Scholar
  94. Lii P, Romanova M, Lovelace R (2012a) Magnetic launching and collimation of jets from the disc-magnetosphere boundary: 2.5D MHD simulations. Monthly Notic Royal Astron Soc 420:2020–2033. doi: 10.1111/j.1365-2966.2011.20133.x
  95. Lii PS, Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2012b) Propeller-driven outflows from an MRI disc. Mon Notic R Astron Soc 441:86–100. doi: 10.1093/mnras/stu495
  96. Liu Y-H, Daughton W, Karimabadi H, Li H, Roytershteyn V (2013) Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys Rev Lett 110:265004. doi: 10.1103/PhysRevLett.110.265004 ADSCrossRefGoogle Scholar
  97. Lu Q, Lu S, Huang C, Wu M, Wang S (2013) Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection. Plasma Phys Contr Fusion 55:085019. doi: 10.1088/0741-3335/55/8/085019 ADSCrossRefGoogle Scholar
  98. Malakit K, Shay MA, Cassak PA, Bard C (2010) Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J Geophys Res 115:A10223. doi: 10.1029/2010JA015452 ADSCrossRefGoogle Scholar
  99. Malakit K, Shay MA, Cassak PA, Ruffolo D (2013) New electric field in asymmetric magnetic reconnection. Phys Rev Lett 111:135001. doi: 10.1103/PhysRevLett.111.135001 ADSCrossRefGoogle Scholar
  100. Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y (1994) A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371:495–497. doi: 10.1038/371495a0 ADSCrossRefGoogle Scholar
  101. Melzani M, Walder R, Folini D, Winisdoerffer C, Favre JM (2014a) Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations. Astron Astrophys 570:A111. doi: 10.1051/0004-6361/201424083 ADSCrossRefGoogle Scholar
  102. Melzani M, Walder R, Folini D, Winisdoerffer C, Favre JM (2014b) The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron Astrophys 570:A112. doi: 10.1051/0004-6361/201424193 ADSCrossRefGoogle Scholar
  103. Miesch M, Matthaeus W, Brandenburg A, Petrosyan A, Pouquet A, Cambon C, Jenko F, Uzdensky D, Stone J, Tobias S, Toomre J, Velli M, Iess S (2015) Large-eddy simulations of magnetohydrodynamic turbulence in heliophysics and astrophysics. Space Sci Rev. doi: 10.1007/s11214-015-0190-7
  104. Miura A (1982) Nonlinear evolution of the magnetohydrodynamic Kelvin–Helmholtz instability. Phys Rev Lett 49:779–782. doi: 10.1103/PhysRevLett.49.779 ADSCrossRefGoogle Scholar
  105. Mozer FS, Bale SD, Phan TD (2002) Evidence of diffusion regions at a subsolar magnetopause crossing. Phys Rev Lett 89:015002. doi: 10.1103/PhysRevLett.89.015002 ADSCrossRefGoogle Scholar
  106. Muñoz PA, Kilian P, Büchner J. (2014) Instabilities of collisionless current sheets revisited: The role of anisotropic heating. Phys Plasmas 21, 112106. arXiv:1501.06022 [physics.plasm-ph] doi:10.1063/1.4901033
  107. Nagai T, Shinohara I, Zenitani S, Nakamura R, Nakamura TKM, Fujimoto M, Saito Y, Mukai T (2013) Three-dimensional structure of magnetic reconnection in the magnetotail from Geotail observations. J Geophys Res 118:1667–1678. doi: 10.1002/jgra.50247 CrossRefGoogle Scholar
  108. Nalewajko K, Giannios D, Begelman MC, Uzdensky DA, Sikora M (2011) Radiative properties of reconnection-powered minijets in blazars. Mon Notic R Astron Soc 413:333–346. doi: 10.1111/j.1365-2966.2010.18140.x ADSCrossRefGoogle Scholar
  109. Narita Y, Glassmeier K-H, Sahraoui F, Goldstein ML (2010) Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys Rev Lett 104:171101. doi: 10.1103/PhysRevLett.104.171101 ADSCrossRefGoogle Scholar
  110. Newman DL, Goldman MV, Ergun RE, Mangeney A (2001) Formation of double layers and electron holes in a current-driven space plasma. Phys Rev Lett 87:255001. doi: 10.1103/PhysRevLett.87.255001 ADSCrossRefGoogle Scholar
  111. Ng J, Egedal J, Le A, Daughton W (2012) Phase space structure of the electron diffusion region in reconnection with weak guide field. Phys Plasmas 19:112108. doi: 10.1063/1.4766895 ADSCrossRefGoogle Scholar
  112. Parker EN (1957) Sweet’s mechanism for merging magnetic fields in conducting fluids. J Geophys Res 62:509–520. doi: 10.1029/JZ062i004p00509 ADSCrossRefGoogle Scholar
  113. Paschmann G, Øieroset M, Phan TD (2013) In-situ observations of reconnection in space. Space Sci Rev 178:385–417. doi: 10.1007/s11214-012-9957-2 ADSCrossRefGoogle Scholar
  114. Perri S, Carbone V, Veltri P (2010a) Observations of thin current sheets in the solar wind and their role in magnetic energy dissipation. Am Geophys Union, Fall Meeting Abstract # SH51B-2099Google Scholar
  115. Perri S, Goldstein ML, Dorelli J, Sahraoui F, Gurgiolo CA, Karimabadi H, Mozer F, Wendel DE, TenBarge J, Roytershteyn V (2010b) Where does fluid-like turbulence break down in the solar wind? Astrophys J 725:L52–L55. doi: 10.1088/2041-8205/725/1/52
  116. Petschek HE (1964) Magnetic field annihilation. In: Hess WN (ed) The physics of solar flares. Proceedings AAS-NASA symposium. NASA, Greenbelt, pp 425–439Google Scholar
  117. Phan TD, Drake JF, Shay MA, Gosling JT, Paschmann G, Eastwood JP, Øieroset M, Fujimoto M, Angelopoulos V (2014) Ion bulk heating in magnetic reconnection exhausts at earth’s magnetopause: dependence on the inflow Alfvén speed and magnetic shear angle. Geophys Res Lett 41:7002–7010. doi: 10.1002/2014GL061547 ADSCrossRefGoogle Scholar
  118. Pritchett PL (2001) Geospace environment modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J Geophys Res 106:3783–3798. doi: 10.1029/1999JA001006 ADSCrossRefGoogle Scholar
  119. Pritchett PL (2005) Onset and saturation of guide-field magnetic reconnection. Phys Plasmas 12:062301. doi: 10.1063/1.1914309 ADSCrossRefGoogle Scholar
  120. Pritchett PL (2008) Collisionless magnetic reconnection in an asymmetric current sheet. J Geophys Res 113:A06210. doi: 10.1029/2007JA012930 ADSGoogle Scholar
  121. Pritchett PL (2013a) The onset of reconnection in three dimensions. Phys Plasmas 20:080703. doi: 10.1063/1.4817961 ADSCrossRefGoogle Scholar
  122. Pritchett PL (2013b) The influence of intense electric fields on three-dimensional asymmetric reconnection. Phys Plasmas 20:061204. doi: 10.1063/1.4811123 ADSCrossRefGoogle Scholar
  123. Pritchett PL, Coroniti FV (2004) Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J Geophys Res 109:A01220. doi: 10.1029/2003JA009999 ADSGoogle Scholar
  124. Retinò A, Sundkvist D, Vaivads A, Mozer F, André M, Owen CJ (2007) In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys 3:236–238. doi: 10.1038/nphys574 ADSCrossRefGoogle Scholar
  125. Romanova MM, Owocki SP (2015) Accretion, outflows, and winds of magnetized stars. In: Beskin VS et al (eds) The strongest magnetic fields in the universe, Chapter 11. ISSI Space Sci Series SSSI–54. Springer, New York (2015)Google Scholar
  126. Roussev II, Galsgaard K, Downs C, Lugaz N, Sokolov IV, Moise E, Lin J (2012) Explaning fast ejections of plasma and exotic X-ray emission from the solar corona. Nature Phys 8:845–849. doi: 10.1038/NPHYS2427 ADSCrossRefGoogle Scholar
  127. Runov A, Nakamura R, Baumjohann W, Zhang TL, Volwerk M, Eichelberger H-U, Balogh A (2003a) Cluster observation of a bifurcated current sheet. Geophys Res Lett 30:1036. doi: 10.1029/2002GL016136 ADSCrossRefGoogle Scholar
  128. Runov A, Nakamura R, Baumjohann W, Treumann RA, Zhang TL, Volwerk M, Vörös Z, Balogh A, Glassmeier K-H, Klecker B, Rème H, Kistler L (2003b) Current sheet structure near magnetic S-line observed by Cluster. Geophys Res Lett 30:1579. doi: 10.1029/2002GL016730 ADSCrossRefGoogle Scholar
  129. Sahraoui F, Goldstein ML, Khotyaintsev YV (2009) Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys Rev Lett 102:231102. doi: 10.1103/PhysRevLett.102.231102 ADSCrossRefGoogle Scholar
  130. Sahraoui F, Huang SY, Belmont G, Goldstein ML, RetinøA Robert P, De Patoul J (2013) Scaling of the electron dissipation range of solar wind turbulence. Astrophys J 777:15. doi: 10.1088/0004-637X/777/1/15 ADSCrossRefGoogle Scholar
  131. Schlickeiser R (2002) Cosmic Ray Astrophysics. Astron Astrophys Library. Springer, Berlin. doi: 10.1007/978-3-662-04814-6 CrossRefGoogle Scholar
  132. Schlickeiser R, Yoon PH (2014) On the marginal instability threshold condition of the aperiodic ordinary mode. Phys Plasmas 21:072119. doi: 10.1063/1.4890463 ADSCrossRefGoogle Scholar
  133. Schoeffler KM, Drake JF, Swisdak M, Knizhnik K (2013) The role of pressure anisotropy on particle acceleration during magnetic reconnection. Astrophys J 764:126. doi: 10.1088/0004-637X/764/2/126 ADSCrossRefGoogle Scholar
  134. Scudder JD, Karimabadi H, DaughtonW, Roytershteyn V (2015) Frozen flux violation, electron demagnetization and magnetic reconnection. Phys Plasmas 22:101204. doi: 10.1063/1.4932332
  135. Shirakawa K, Hoshino M (2014) Asymmetric evolution of magnetic reconnection in collisionless accretion disk. Phys Plasmas 21:052903. doi: 10.1063/1.4875739 ADSCrossRefGoogle Scholar
  136. Sironi L, Spitkovsky A (2014a) Relativistic reconnection: an efficient source of non-thermal particles. Astrophys J Lett 783:L21. doi: 10.1088/2041-8205/783/L21
  137. Sironi L, Spitkovsky A (2014b) Relativistic reconnection: an efficient source of non-thermal particles. Astrophys J Lett 450:183–191. doi: 10.1093/mnras/stv641
  138. Sironi L, Petropoulou M, Giannios D (2015a) Relativistic jets shine through shocks or magnetic reconnection? Mon Notic R Astron Soc 450:183–191. doi: 10.1093/mnras/stv641
  139. Sironi L, Keshet U, Lemoine M (2015b) Relativistic shocks: particle acceleration and magnetization. Space Sci Rev. arXiv:1506.02034; doi: 10.1007/s11214-015-0181-8
  140. Sitnov MI, Merkin VG, Swisdak M, Motoba T, Buzulukova B, Moore TE, Mauk BH, Ohtani S (2014) Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions. J Geophys Res 119:7151–7168. doi: 10.1002/2014JA020205 CrossRefGoogle Scholar
  141. Speiser TW (1965) Particle trajectories in model current sheets 1. Analytical solutions. J Geophys Res 70:4219–4226. doi: 10.1029/JZ070i017p04219 ADSCrossRefGoogle Scholar
  142. Sundkvist D, Retinò A, Vaivads A, Bale SD (2007) Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys Rev Lett 99:025004. doi: 10.1103/PhysRevLett.99.025004 ADSCrossRefGoogle Scholar
  143. Sweet PA (1958) The neutral point theory of solar flares. In: Lehnert B (ed) Electromagnetic phenomena in cosmical physics. IAU symposium 6. Kluwer, Dordrecht, Holland, pp 123–134Google Scholar
  144. Tavani M, Bulgarelli A, Vittorini V, Pellizzoni A, Striani E, Caraveo P, Weisskopf MC, Tennant A et al (2011) Discovery of powerful Gamma-Ray flares from the Crab Nebula. Science 331:736. doi: 10.1126/science.1200083 ADSCrossRefGoogle Scholar
  145. Treumann RA (2001) Origin of resistivity in reconnection. Earth Planets Space 53:453–462. doi: 10.1186/BF03353256 ADSCrossRefGoogle Scholar
  146. Treumann RA, Nakamura R, Baumjohann W (2011) Relativistic transformation of phase-space distributions. Ann Geophys 29:1259–1265. doi: 10.5194/angeo-29-1259-2011 ADSCrossRefGoogle Scholar
  147. Treumann RA, Baumjohann W (2012) A note on the Weibel instabiity and thermal fluctuations. Ann Geophys 30:427–413. doi: 10.5194/angeo-30-427-2012 ADSCrossRefGoogle Scholar
  148. Treumann RA, Baumjohann W (2013) Collisionless magnetic reconnection in space plasmas. Front Phys 1:00031. doi: 10.3389/fphy.2013.00031 CrossRefGoogle Scholar
  149. Treumann RA, Baumjohann W (2014a) Plasma wave mediated attractive potentials: a prerequisite for electron compound formation. Ann Geophys 32:975–989. doi: 10.5194/angeo-32-975-2014
  150. Treumann RA, Baumjohann W (2014b) Superdiffusion revisited in view of collisionless reconnection. Ann Geophys 32:643–650. doi: 10.5194/angeo-32-643-2014
  151. Treumann RA, Baumjohann W, Balogh A (2014) The strongest magnetic fields in the universe: how strong can they become? Front Phys 2:00049. doi: 10.3389/fphy.2014.00049 Google Scholar
  152. Treumann RA, Baumjohann W, Narita Y (2015) Ideal mhd turbulence: the inertial range spectrum with collisionless dissipation. Front Phys 3:00034. doi: 10.3389/fphys.2015.00034 Google Scholar
  153. Uzdensky DA, Spitkovsky A (2014) Physical conditions in the reconnection layer in pulsar magnetospheres. Astrophys J 780:3. doi: 10.1088/0004-637X/780/1/3 ADSCrossRefGoogle Scholar
  154. Uzdensky DA, Loureiro NF, Schekochihin AA (2010) Fast magnetic reconnection in the plasmoid-dominated regime. Phys Rev Lett 105:235002. doi: 10.1103/PhysRevLett.105.235002 ADSCrossRefGoogle Scholar
  155. Uzdensky DA, Cerutti B, Begelman MC (2011) Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula. Astrophys J Lett 737:40. doi: 10.1088/2041-8205/737/2/L40 ADSCrossRefGoogle Scholar
  156. Weibel ES (1959) Spontaneously growing transverse waves ikn a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2:83–84. doi: 10.1103/PhysRevLett.2.83 ADSCrossRefGoogle Scholar
  157. Wendel DE, Olson DK, Hesse M, Aunai N, Kuznetsova M, Karimabadi H, Daughton W, Adrian ML (2013) The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection. Phys Plasmas 20:122105. doi: 10.1063/1.4833675 ADSCrossRefGoogle Scholar
  158. Yamada M, Kulsrud R, Ji H (2010) Magnetic reconnection. Rev Mod Phys 82:603–664. doi: 10.1103/RevModPhys.82.603 ADSCrossRefGoogle Scholar
  159. Yang S, Zhang J, Xiang Y (2015) Magnetic reconnection between small-scale loops observed with the new vacuum solar telescope. Astrophys J Lett 798:L11.arXiv:1412.1314v1 [astro-ph.SR]
  160. Yokoi N, Higashimori K, Hoshino M (2013) Transport enhancement and suppression in turbulent magnetic reconnection: a self-consistent turbulence model. Phys Plasmas 20:122310. doi: 10.1063/1.4851976 ADSCrossRefGoogle Scholar
  161. Yoon PH, Schlickeiser R, Kolberg U (2014) Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: the rigorous relativistic kinetic theory. Phys Plasmas 21:032109. doi: 10.1063/1.4868232 ADSCrossRefGoogle Scholar
  162. Zenitani S, Hoshino M (2008) The role of the guide field in relativistic pair plasma reconnection. Astrophys J 677:530–544. doi: 10.1086/528708 ADSCrossRefGoogle Scholar
  163. Zenitani S, Hesse M (2008) Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection. Astrophys J 684:1477–1485. doi: 10.1086/590425 ADSCrossRefGoogle Scholar
  164. Zhong X, Wang J (2013) A magnetic reconnection origin for the soft X-ray excess in AGN. Astrophys J 773:23. doi: 10.1086/0004-637X/773/1/23 ADSCrossRefGoogle Scholar
  165. Zhou X, Büchner J, Bárta M, Gan W, Liu S (2015) Electron acceleration by cascading reconnection in the solar corona. I. Magnetic gradient and curvature drift effects, Astrophys J (in press). arXiv:1504.06486 [astro-ph.SR]
  166. Zhuravleva I, Churazov E, Schekochihin AA, Allen SW, Arévalo P, Fabian AC, Forman WR, Sanders JS et al (2014) Turbulent heating in galaxy clusters brightest in X-rays. Nature 515(7525):85–87. doi: 10.1038/nature13830
  167. Zweibel E, Yamada M (2009) Magnetic reconnection in astrophysical and laboratory plasmas. Ann Rev Astron Astrophys 47:291–332. doi: 10.1146/annurec-astro-082708-101726 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Geophysics Section, Department of Geophysics and Environmental SciencesLudwig-Maximilians-University MunichMunichGermany
  2. 2.Department of Physics and AstronomyDartmouth CollegeHanoverUSA
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria

Personalised recommendations