Advertisement

Atmospheres of brown dwarfs

  • Christiane Helling
  • Sarah Casewell
Review Article

Abstract

Brown dwarfs are the coolest class of stellar objects known to date. Our present perception is that brown dwarfs follow the principles of star formation, and that brown dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes brown dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of \(\lesssim \)2,800 K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying X-ray activity indicators across the fully convective boundary.

Keywords

(Stars:) brown dwarfs Stars: low-mass Stars: atmospheres Infrared: stars Radio lines: stars X-rays: stars 

References

  1. Ackerman AS, Marley MS (2001) Precipitating condensation clouds in substellar atmospheres. Ap J 556:872–884. doi: 10.1086/321540; arXiv:astro-ph/0103423
  2. Ackerman AS, Marley MS (2013) Erratum: ”Precipitating condensation clouds in substellar atmospheres”. Ap J 765:75. doi: 10.1088/0004-637X/765/1/75 ADSCrossRefGoogle Scholar
  3. Allard F, Hauschildt PH, Alexander DR, Starrfield S (1997) Model atmospheres of very low mass stars and brown dwarfs. ARA A 35:137–177. doi: 10.1146/annurev.astro.35.1.137 ADSCrossRefGoogle Scholar
  4. Allard F, Hauschildt PH, Alexander DR, Tamanai A, Schweitzer A (2001) The limiting effects of dust in brown dwarf model atmospheres. Ap J 556:357–372. doi: 10.1086/321547; arXiv:astro-ph/0104256
  5. Allard F, Homeier D, Freytag B, Schaffenberger W, Rajpurohit AS (2013) Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Memorie della Societa Astronomica Italiana Supplementi 24:128. arXiv:1302.6559
  6. Allers KN, Liu MC (2013a) A near-infrared spectroscopic study of young field ultracool dwarfs. Ap J 772:79. doi: 10.1088/0004-637X/772/2/79; arXiv:1305.4418
  7. Allers KN, Liu MC (2013b) A near-infrared spectroscopic study of young field ultracool dwarfs: additional analysis. Mem Societa Astronomica Italiana 84:1089. arXiv:1307.7153
  8. Anderson DR et al (2011) WASP-30b: a 61 \(\text{ M }{}_{Jup}\) brown dwarf transiting a V = 12, F8 star. Ap J l 726:L19. doi: 10.1088/2041-8205/726/2/L19; arXiv:1010.3006
  9. Antonova A, Doyle JG, Hallinan G, Golden A, Koen C (2007) Sporadic long-term variability in radio activity from a brown dwarf. A&A 472:257–260. doi: 10.1051/0004-6361:20077231; arXiv:0707.0634
  10. Antonova A, Hallinan G, Doyle JG, Yu S, Kuznetsov A, Metodieva Y, Golden A, Cruz KL (2013) Volume-limited radio survey of ultracool dwarfs. A&A 549:A131. doi: 10.1051/0004-6361/201118583; arXiv:1212.3464
  11. Apai D, Radigan J, Buenzli E, Burrows A, Reid IN, Jayawardhana R (2013a) HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. Ap J 768:121. doi: 10.1088/0004-637X/768/2/121; arXiv:1303.4151
  12. Apai D, Radigan J, Buenzli E, Burrows A, Reid IN, Jayawardhana R (2013b) HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. Ap J 768:121. doi: 10.1088/0004-637X/768/2/121; arXiv:1303.4151
  13. Artigau É, Bouchard S, Doyon R, Lafrenière D (2009) Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: evidence for evolving weather patterns. Ap J 701:1534–1539. doi: 10.1088/0004-637X/701/2/1534; arXiv:0906.3514
  14. Audard M, Osten RA, Brown A, Briggs KR, Güdel M, Hodges-Kluck E, Gizis JE (2007) A Chandra X-ray detection of the L dwarf binary Kelu-1: simultaneous Chandra and very large array observations. A&A 471:L63–L66. doi: 10.1051/0004-6361:20078093; arXiv:0707.1882
  15. Bailer-Jones CAL, Mundt R (2001) Variability in ultra cool dwarfs: evidence for the evolution of surface features. A&A 367:218–235. doi: 10.1051/0004-6361:20000416; arXiv:astro-ph/0012224
  16. Bailey RL, Helling C, Hodosán G, Bilger C, Stark CR (2013) Ionisation in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events. arXiv:1312:6789
  17. Barman TS, Hauschildt PH, Allard F (2001) Irradiated planets. Ap J 556:885–895. doi: 10.1086/321610; arXiv:astro-ph/0104262
  18. Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Ap J 733:65. doi: 10.1088/0004-637X/733/1/65; arXiv:1103.3895
  19. Barstow JK, Aigrain S, Irwin PGJ, Fletcher LN, Lee JM (2013) Constraining the atmosphere of GJ 1214b using an optimal estimation technique. MNRAS 434:2616–2628. doi: 10.1093/mnras/stt1204; arXiv:1306.6567
  20. Becklin EE, Zuckerman B (1988) A low-temperature companion to a white dwarf star. Nature 336:656–658. doi: 10.1038/336656a0 ADSCrossRefGoogle Scholar
  21. Beichman C, Gelino CR, Kirkpatrick JD, Cushing MC, Dodson-Robinson S, Marley MS, Morley CV, Wright EL (2014) WISE Y dwarfs as probes of the brown dwarf-exoplanet connection. arXiv:1401:1194
  22. Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Ap J 753:100. doi: 10.1088/0004-637X/753/2/100; arXiv:1203.4018
  23. Benz AO, Güdel M (1994) X-ray/microwave ratio of flares and coronae. A&A 285:621–630ADSGoogle Scholar
  24. Bergemann M, Ruchti G, Serenelli A, Feltzing S, Alvez-Brito A, Asplund M, Bensby T, Heiter U, Korn A, Lind K, Marino A, Jofre P, Nordlander T, Ryde N, Gilmore G, Randich S, Binney J, Bonifacio P, Drew J, Ferguson A, Jeffries R, Micela G, Negueruela I, Prusti T, Rix HW, Vallenari A, Alfaro Navarro E, Bragaglia A, Morbidelli L, Pancino E, Recio-Blanco A, Smiljanic R, Hill V, Lardo C, de Laverny P, Magrini L, Sacco G, Costado M, Kordopatis G, Tautvaisiene G (2014) The Gaia-ESO survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk. arXiv:1401.4437
  25. Berger E (2002) Flaring up all over-radio activity in rapidly rotating late M and L dwarfs. Ap J 572:503–513. doi: 10.1086/340301; arXiv:astro-ph/0111317
  26. Berger E (2006) Radio observations of a large sample of late m, l, and t dwarfs: the distribution of magnetic field strengths. Ap J 648:629–636. doi: 10.1086/505787 ADSCrossRefGoogle Scholar
  27. Berger E, Rutledge RE, Reid IN, Bildsten L, Gizis JE, Liebert J, Martín E, Basri G, Jayawardhana R, Brandeker A, Fleming TA, Johns-Krull CM, Giampapa MS, Hawley SL, Schmitt JHMM (2005) The magnetic properties of an L dwarf derived from simultaneous radio, X-ray, and \(\text{ H }\alpha \) observations. Ap J 627:960–973. doi: 10.1086/430343; arXiv:astro-ph/0502384
  28. Berger E, Rutledge RE, Phan-Bao N, Basri G, Giampapa MS, Gizis JE, Liebert J, Martín E, Fleming TA (2009) Periodic radio and \(\text{ H }\alpha \) emission from the L dwarf binary 2MASSW J0746425+200032: exploring the magnetic field topology and radius of an L dwarf. Ap J 695:310–316. doi: 10.1088/0004-637X/695/1/310; arXiv:0809.0001
  29. Beuermann K, Dreizler S, Hessman FV, Backhaus U, Boesch A, Husser TO, Nortmann L, Schmelev A, Springer R (2013) The eclipsing post-common envelope binary CSS21055: a white dwarf with a probable brown-dwarf companion. A&A 558:A96. doi: 10.1051/0004-6361/201322241; arXiv:1312.5088
  30. Bihain G, Rebolo R, Béjar VJS, Villó-Pérez I, Díaz-Sánchez A, Pérez-Garrido A, Caballero JA, Bailer-Jones CAL, Barrado y Navascués D, Eislöffel J, Forveille T, Goldman B, Henning T, Martín EL, Mundt R (2009) Candidate free-floating super-Jupiters in the young \(\sigma \) Orionis open cluster. A&A 506:1169–1182. doi: 10.1051/0004-6361/200912210; arXiv:0909.0802
  31. Bilger C, Rimmer P, Helling C (2013) Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres. MNRAS 435:1888–1903. doi: 10.1093/mnras/stt1378; arXiv:1307.2565
  32. Bonnefoy M, Marleau GD, Galicher R, Beust H, Lagrange AM, Baudino JM, Chauvin G, Borgniet S, Meunier N, Rameau J, Boccaletti A, Cumming A, Helling C, Homeier D, Allard F, Delorme P (2013) The near-infrared spectral energy distribution of \(\beta \) Pictoris b. A&A 555:A107. doi: 10.1051/0004-6361/201220838; arXiv:1302.1160
  33. Bozhinova I, Helling Ch, Scholz A (2014) Planetary host stars: Evaluating uncertainties in ultra-cool model atmospheres. MNRAS. http://adsabs.harvard.edu/abs/2014  arXiv:1405.5416B
  34. Browning MK, Basri G, Marcy GW, West AA, Zhang J (2010) Rotation and magnetic activity in a sample of M-dwarfs. Ap J 139:504–518. doi: 10.1088/0004-6256/139/2/504 ADSGoogle Scholar
  35. Buenzli E, Apai D, Morley CV, Flateau D, Showman AP, Burrows A, Marley MS, Lewis NK, Reid IN (2012) Vertical atmospheric structure in a variable brown dwarf: pressure-dependent phase shifts in simultaneous hubble space telescope-spitzer light curves. Ap Jl 760:L31. doi: 10.1088/2041-8205/760/2/L31; arXiv:1210.6654
  36. Buenzli E, Apai D, Radigan J, Reid IN, Flateau D (2014) Brown dwarf photospheres are patchy: a hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability. Ap J 782:77. doi: 10.1088/0004-637X/782/2/77; arXiv:1312.5294
  37. Burgasser AJ (2004) Discovery of a second L subdwarf in the two micron all sky survey. Ap Jl 614:L73–L76. doi: 10.1086/425418; arXiv:astro-ph/0409179
  38. Burgasser AJ, Kirkpatrick JD (2006) Discovery of the coolest extreme subdwarf. Ap J 645:1485–1497. doi: 10.1086/504375; arXiv:astro-ph/0603382
  39. Burgasser AJ, Putman ME (2005) Quiescent radio emission from southern late-type M dwarfs and a spectacular radio flare from the M8 dwarf DENIS 1048–3956. Ap J 626:486–497. doi: 10.1086/429788; arXiv:astro-ph/0502365
  40. Burgasser AJ, Kirkpatrick JD, Brown ME, Reid IN, Burrows A, Liebert J, Matthews K, Gizis JE, Dahn CC, Monet DG, Cutri RM, Skrutskie MF (2002) The spectra of T dwarfs I: near-infrared data and spectral classification. Ap J 564:421–451. doi: 10.1086/324033; arXiv:astro-ph/0108452
  41. Burgasser AJ, Kirkpatrick JD, Burrows A, Liebert J, Reid IN, Gizis JE, McGovern MR, Prato L, McLean IS (2003) The first substellar subdwarf? Discovery of a metal-poor L dwarf with Halo kinematics. Ap J 592:1186–1192. doi: 10.1086/375813; arXiv:astro-ph/0304174
  42. Burgasser AJ, Geballe TR, Leggett SK, Kirkpatrick JD, Golimowski DA (2006) A unified near-infrared spectral classification scheme for T dwarfs. Ap J 637:1067–1093. doi: 10.1086/498563; arXiv:astro-ph/0510090
  43. Burgasser AJ, Vrba FJ, Lépine S, Munn JA, Luginbuhl CB, Henden AA, Guetter HH, Canzian BC (2008) Parallax and luminosity measurements of an L subdwarf. Ap J 672:1159–1166. doi: 10.1086/523810; arXiv:0709.1373
  44. Burgasser AJ, Gillon M, Faherty JK, Radigan J, Amaury H M J, Plavchan P, Street R, Jehin E, Delrez L, Opitom C (2014) A monitoring campaign for Luhman 16AB I: detection of resolved near-infrared spectroscopic variability. arXiv:1402.2342
  45. Burleigh MR, Hogan E, Dobbie PD, Napiwotzki R, Maxted PFL (2006) A near-infrared spectroscopic detection of the brown dwarf in the post common envelope binary WD0137-349. MNRAS 373:L55–L59. doi: 10.1111/j.1745-3933.2006.00242.x; arXiv:astro-ph/0609366
  46. Burleigh MR, Steele PR, Dobbie PD, Farihi J, Napiwotzki R, Maxted PFL, Barstow MA, Jameson RF, Casewell SL, Gaensicke BT, Marsh TR (2011) Brown dwarf companions to white dwarfs. In: Schuh S, Drechsel H, Heber U (eds) American Institute of Physics Conference Series, vol 1331, pp 262–270. doi: 10.1063/1.3556209; arXiv:1102.0505
  47. Burningham B, Cardoso CV, Smith L, Leggett SK, Smart RL, Mann AW, Dhital S, Lucas PW, Tinney CG, Pinfield DJ, Zhang Z, Morley C, Saumon D, Aller K, Littlefair SP, Homeier D, Lodieu N, Deacon N, Marley MS, van Spaandonk L, Baker D, Allard F, Andrei AH, Canty J, Clarke J, Day-Jones AC, Dupuy T, Fortney JJ, Gomes J, Ishii M, Jones HRA, Liu M, Magazzú A, Marocco F, Murray DN, Rojas-Ayala B, Tamura M (2013) 76 T dwarfs from the UKIDSS LAS: benchmarks, kinematics and an updated space density. MNRAS 433:457–497. doi: 10.1093/mnras/stt740; arXiv:1304.7246
  48. Burningham B, Smith L, Cardoso CV, Lucas PW, Burgasser AJ, Jones HRA, Smart RL (2014) The discovery of a T6.5 subdwarf. arXiv:1401.5982
  49. Burrows A, Hubbard WB, Lunine JI (1989) Theoretical models of very low mass stars and brown dwarfs. Ap J 345:939–958. doi: 10.1086/167964 ADSCrossRefGoogle Scholar
  50. Burrows A, Hubbard WB, Lunine JI, Liebert J (2001) The theory of brown dwarfs and extrasolar giant planets. Rev Mod Phys 73:719–765. doi: 10.1103/RevModPhys.73.719; arXiv:astro-ph/0103383
  51. Burrows A, Burgasser AJ, Kirkpatrick JD, Liebert J, Milsom JA, Sudarsky D, Hubeny I (2002) Theoretical spectral models of T dwarfs at short wavelengths and their comparison with data. Ap J 573:394–417. doi: 10.1086/340584; arXiv:astro-ph/0109227
  52. Burrows A, Sudarsky D, Lunine JI (2003) Beyond the T dwarfs: theoretical spectra, colors, and detectability of the coolest brown dwarfs. Ap J 596:587–596. doi: 10.1086/377709; arXiv:astro-ph/0304226
  53. Burrows A, Sudarsky D, Hubeny I (2006) L and T dwarf models and the L to T transition. Ap J 640:1063–1077. doi: 10.1086/500293; arXiv:astro-ph/0509066
  54. Burrows A, Heng K, Nampaisarn T (2011) The dependence of brown dwarf radii on atmospheric metallicity and clouds: theory and comparison with observations. Ap J 736:47. doi: 10.1088/0004-637X/736/1/47; arXiv:1102.3922
  55. Casewell SL, Dobbie PD, Hodgkin ST, Moraux E, Jameson RF, Hambly NC, Irwin J, Lodieu N (2007) Proper motion L and T dwarf candidate members of the Pleiades. MNRAS 378:1131–1140. doi: 10.1111/j.1365-2966.2007.11848.x; arXiv:0704.1578
  56. Casewell SL, Jameson RF, Burleigh MR, Dobbie PD, Roy M, Hodgkin ST, Moraux E (2011) Methane band and Spitzer mid-IR imaging of L and T dwarf candidates in the Pleiades. MNRAS 412:2071–2078. doi: 10.1111/j.1365-2966.2010.18044.x; arXiv:1011.4218
  57. Casewell SL, Burleigh MR, Wynn GA, Alexander RD, Napiwotzki R, Lawrie KA, Dobbie PD, Jameson RF, Hodgkin ST (2012) WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf-brown-dwarf binary in Praesepe. Ap Jl 759:L34. doi: 10.1088/2041-8205/759/2/L34; arXiv:1210.0446
  58. Casewell SL, Burleigh MR, Lawrie KA, Maxted PFL, Dobbie PD, Napiwotzki R (2013) Irradiated brown dwarfs. Mem Societa Astronomica Italiana 84:1022 arXiv:1401.1405 ADSGoogle Scholar
  59. Catlow CRA, Bromley ST, Hamad S, Mora-Fonz M, Sokol AA, Woodley SM (2010) Modelling nano-clusters and nucleation. Phys Chem Chem Phys (Inc Faraday Trans) 12:786. doi: 10.1039/b916069h ADSCrossRefGoogle Scholar
  60. Chabrier G, Baraffe I, Allard F, Hauschildt P (2000) Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. Ap J 542:464–472. doi: 10.1086/309513; arXiv:astro-ph/0005557
  61. Chabrier G, Johansen A, Janson M, Rafikov R (2014) Giant planet and brown dwarf formation. arXiv:1401:7559
  62. Cheng JY, Rockosi CM, Morrison HL, Schönrich RA, Lee YS, Beers TC, Bizyaev D, Pan K, Schneider DP (2012) Metallicity gradients in the Milky Way disk as observed by the SEGUE survey. Ap J 746:149. doi: 10.1088/0004-637X/746/2/149; arXiv:1110.5933
  63. Clarke FJ, Oppenheimer BR, Tinney CG (2002) A mini-survey for variability in early L dwarfs. MNRAS 335:1158–1162. doi: 10.1046/j.1365-8711.2002.05691.x; arXiv:astro-ph/0205463
  64. Clarke FJ, Hodgkin ST, Oppenheimer BR, Robertson J, Haubois X (2008) A search for J-band variability from late-L and T brown dwarfs. MNRAS 386:2009–2014. doi: 10.1111/j.1365-2966.2008.13135.x ADSCrossRefGoogle Scholar
  65. Cooper CS, Sudarsky D, Milsom JA, Lunine JI, Burrows A (2003) Modeling the formation of clouds in brown dwarf atmospheres. Ap J 586:1320–1337. doi: 10.1086/367763 ADSCrossRefGoogle Scholar
  66. Crossfield IJM, Biller B, Schlieder JE, Deacon NR, Bonnefoy M, Homeier D, Allard F, Buenzli E, Henning T, Brandner W, Goldman B, Kopytova T (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656. doi: 10.1038/nature12955; arXiv:1401.8145
  67. Cruz KL, Kirkpatrick JD, Burgasser AJ (2009) Young L dwarfs identified in the field: a preliminary low-gravity, optical spectral sequence from L0 to L5. Ap J 137:3345–3357. doi: 10.1088/0004-6256/137/2/3345; arXiv:0812.0364
  68. Currie T, Burrows A, Itoh Y, Matsumura S, Fukagawa M, Apai D, Madhusudhan N, Hinz PM, Rodigas TJ, Kasper M, Pyo TS, Ogino S (2011) A combined subaru/VLT/MMT 1–5 \(\mu \text{ m }\) study of planets orbiting HR 8799: implications for atmospheric properties, masses, and formation. Ap J 729:128. doi: 10.1088/0004-637X/729/2/128; arXiv:1101.1973
  69. Cushing MC, Looper D, Burgasser AJ, Kirkpatrick JD, Faherty J, Cruz KL, Sweet A, Sanderson RE (2009) 2MASS J06164006–6407194: the first Outer Halo L subdwarf. Ap J 696:986–993. doi: 10.1088/0004-637X/696/1/986; arXiv:0902.1059
  70. Cushing MC, Saumon D, Marley MS (2010) SDSS J141624.08+134826.7: Blue L dwarfs and non-equilibrium chemistry. Ap J 140:1428–1432. doi: 10.1088/0004-6256/140/5/1428; arXiv:1009.2802
  71. Cushing MC, Kirkpatrick JD, Gelino CR, Griffith RL, Skrutskie MF, Mainzer A, Marsh KA, Beichman CA, Burgasser AJ, Prato LA, Simcoe RA, Marley MS, Saumon D, Freedman RS, Eisenhardt PR, Wright EL (2011) The discovery of Y dwarfs using data from the wide-field infrared survey explorer (WISE). Ap J 743:50. doi: 10.1088/0004-637X/743/1/50; arXiv:1108.4678
  72. Cushing MC, Kirkpatrick JD, Gelino CR, Mace GN, Skrutskie MF, Gould A (2014) Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf WISE J041022.71+150248.4. arXiv:1402.1378
  73. Delfosse X, Forveille T, Perrier C, Mayor M (1998) Rotation and chromospheric activity in field M dwarfs. A&A 331:581–595ADSGoogle Scholar
  74. Dieterich SB, Henry TJ, Jao WC, Winters JG, Hosey AD, Riedel AR, Subasavage JP (2013) The solar neighborhood XXXII: the hydrogen burning limit. arXiv:1312:1736
  75. Dobbie PD, Burleigh MR, Levan AJ, Barstow MA, Napiwotzki R, Holberg JB, Hubeny I, Howell SB (2005) A near-infrared spectroscopic search for very-low-mass cool companions to notable DA white dwarfs. MNRAS 357:1049–1058. doi: 10.1111/j.1365-2966.2005.08720.x; arXiv:astro-ph/0412222
  76. Dupuy TJ, Kraus AL (2013) Distances, luminosities, and temperatures of the coldest known substellar objects. Science 341:1492–1495. doi: 10.1126/science.1241917; arXiv:1309.1422
  77. Dupuy TJ, Liu MC, Bowler BP, Cushing MC, Helling C, Witte S, Hauschildt P (2010) Studying the physical diversity of late-M dwarfs with dynamical masses. Ap J 721:1725–1747. doi: 10.1088/0004-637X/721/2/1725; arXiv:1007.4197
  78. Enoch ML, Brown ME, Burgasser AJ (2003) Photometric variability at the L/T dwarf boundary. Ap J 126:1006–1016. doi: 10.1086/376598; arXiv:astro-ph/0305048
  79. Faherty JK, Cruz KL, Rice EL, Riedel A (2013a) Young brown dwarfs as giant exoplanet analogs. Mem Societa Astronomica Italiana 84:955. arXiv:1307.8413
  80. Faherty JK, Rice EL, Cruz KL, Mamajek EE, Núñez A (2013b) 2MASS J035523.37+113343.7: a young, dusty, nearby, isolated brown dwarf resembling a giant exoplanet. Ap J 145:2. doi: 10.1088/0004-6256/145/1/2; arXiv:1206.5519
  81. Faherty JK, Rice EL, Cruz KL, Mamajek EE, Núñez A (2013c) 2MASS J035523.37+113343.7: a young, dusty, nearby, isolated brown dwarf resembling a giant exoplanet. Ap J 145:2. doi: 10.1088/0004-6256/145/1/2; arXiv:1206.5519
  82. Farihi J, Christopher M (2004) A possible brown dwarf companion to the white dwarf GD 1400. Ap J 128:1868–1871. doi: 10.1086/423919; arXiv:astro-ph/0407036
  83. Fletcher LN, Orton GS, Yanamandra-Fisher P, Fisher BM, Parrish PD, Irwin PGJ (2009) Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200:154–175. doi: 10.1016/j.icarus.2008.11.019 ADSCrossRefGoogle Scholar
  84. Fletcher LN, Baines KH, Momary TW, Showman AP, Irwin PGJ, Orton GS, Roos-Serote M, Merlet C (2011) Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 \(\mu \text{ m }\) nightside spectroscopy. Icarus 214:510–533. doi:  10.1016/j.icarus.2011.06.006 ADSCrossRefGoogle Scholar
  85. Fortney JJ, Lodders K, Marley MS, Freedman RS (2008) A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Ap J 678:1419–1435. doi: 10.1086/528370; arXiv:0710.2558
  86. Freytag B, Allard F, Ludwig HG, Homeier D, Steffen M (2010) The role of convection, overshoot, and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres. A&A 513:A19. doi: 10.1051/0004-6361/200913354; arXiv:1002.3437
  87. Geballe TR, Knapp GR, Leggett SK, Fan X, Golimowski DA, Anderson S, Brinkmann J, Csabai I, Gunn JE, Hawley SL, Hennessy G, Henry TJ, Hill GJ, Hindsley RB, Ivezić Ž, Lupton RH, McDaniel A, Munn JA, Narayanan VK, Peng E, Pier JR, Rockosi CM, Schneider DP, Smith JA, Strauss MA, Tsvetanov ZI, Uomoto A, York DG, Zheng W (2002) Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis. Ap J 564:466–481. doi: 10.1086/324078; arXiv:astro-ph/0108443
  88. Gelino CR, Marley MS, Holtzman JA, Ackerman AS, Lodders K (2002) L dwarf variability: I-band observations. Ap J 577:433–446. doi: 10.1086/342150; arXiv:astro-ph/0205305
  89. Gillon M, Triaud AHMJ, Jehin E, Delrez L, Opitom C, Magain P, Lendl M, Queloz D (2013) Fast-evolving weather for the coolest of our two new substellar neighbours. A&A 555:L5. doi: 10.1051/0004-6361/201321620; arXiv:1304.0481
  90. Girardin F, Artigau É, Doyon R (2013) In search of dust clouds: photometric monitoring of a sample of late L and T dwarfs. Ap J 767:61. doi: 10.1088/0004-637X/767/1/61 ADSCrossRefGoogle Scholar
  91. Gizis JE (1997) M-subdwarfs: spectroscopic classification and the metallicity scale. Ap J 113:806–822. doi: 10.1086/118302; arXiv:astro-ph/9611222
  92. Gizis JE, Monet DG, Reid IN, Kirkpatrick JD, Liebert J, Williams RJ (2000) New neighbors from 2MASS: activity and kinematics at the bottom of the main sequence. Ap J 120:1085–1099. doi: 10.1086/301456; arXiv:astro-ph/0004361
  93. Gizis JE, Shipman HL, Harvin JA (2005) First ultraviolet spectrum of a brown dwarf: evidence for \(\text{ H }_{2}\) fluorescence and accretion. Ap J 630:L89–L91. doi: 10.1086/462414; arXiv:astro-ph/0507429
  94. Göres A (1993) The formation of PAHs in C-type star environments. In: Klare G (ed) Reviews in modern astronomy, vol 6, pp 165–178Google Scholar
  95. Güdel M, Benz AO (1993) X-ray/microwave relation of different types of active stars. Ap J 405:L63–L66. doi: 10.1086/186766 ADSCrossRefGoogle Scholar
  96. Gustafsson B, Edvardsson B, Eriksson K, Jørgensen UG, Nordlund Å, Plez B (2008) A grid of MARCS model atmospheres for late-type stars I: methods and general properties. A&A 486:951–970. doi: 10.1051/0004-6361:200809724; arXiv:0805.0554
  97. Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I: mapping the zoo of laboratory collision experiments. A&A 513:A56. doi: 10.1051/0004-6361/200912852; arXiv:0910.4251
  98. Hall PB (2002) 2MASSI J1315309–264951: An L dwarf with strong and variable \(\text{ H }\alpha \) emission. Ap J 564:L89–L92. doi: 10.1086/339020; arXiv:astro-ph/0112241
  99. Hallinan G, Antonova A, Doyle JG, Bourke S, Brisken WF, Golden A (2006) Rotational modulation of the radio emission from the m9 dwarf tvlm 513–46546: broadband coherent emission at the substellar boundary? Ap J 653:690–699. doi: 10.1086/508678 ADSCrossRefGoogle Scholar
  100. Hallinan G, Bourke S, Lane C, Antonova A, Zavala RT, Brisken WF, Boyle RP, Vrba FJ, Doyle JG, Golden A (2007) Periodic bursts of coherent radio emission from an ultracool dwarf. Ap J 663:L25–L28. doi: 10.1086/519790; arXiv:0705.2054
  101. Hallinan G, Antonova A, Doyle JG, Bourke S, Lane C, Golden A (2008) Confirmation of the electron cyclotron maser instability as the dominant source of radio emission from very low mass stars and brown dwarfs. Ap J 684:644–653. doi: 10.1086/590360; http://adsabs.harvard.edu/abs/2008ApJ...684..644H; arXiv:0805.4010
  102. Heinze AN, Metchev S, Apai D, Flateau D, Kurtev R, Marley M, Radigan J, Burgasser AJ, Artigau É, Plavchan P (2013) Weather on other worlds I: detection of periodic variability in the L3 dwarf DENIS-P J1058.7–1548 with precise multi-wavelength photometry. Ap J 767:173. doi: 10.1088/0004-637X/767/2/173; arXiv:1303.2948
  103. Helling C, Fomins A (2013) Modelling the formation of atmospheric dust in brown dwarfs and planetary atmospheres. R Soc Lond Philos Trans Ser A 371(10):581. doi: 10.1098/rsta.2011.0581 MathSciNetGoogle Scholar
  104. Helling C, Woitke P (2006) Dust in brown dwarfs V: growth and evaporation of dirty dust grains. A&A 455:325–338. doi: 10.1051/0004-6361:20054598 ADSCrossRefGoogle Scholar
  105. Helling C, Oevermann M, Lüttke MJH, Klein R, Sedlmayr E (2001) Dust in brown dwarfs I: dust formation under turbulent conditions on microscopic scales. A&A 376:194–212. doi: 10.1051/0004-6361:20010937 ADSCrossRefGoogle Scholar
  106. Helling C, Klein R, Woitke P, Nowak U, Sedlmayr E (2004) Dust in brown dwarfs IV: dust formation and driven turbulence on mesoscopic scales. A&A 423:657–675. doi: 10.1051/0004-6361:20034514; arXiv:astro-ph/0404272
  107. Helling C, Ackerman A, Allard F, Dehn M, Hauschildt P, Homeier D, Lodders K, Marley M, Rietmeijer F, Tsuji T, Woitke P (2008a) A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres. MNRAS 391:1854–1873. doi: 10.1111/j.1365-2966.2008.13991.x; arXiv:0809.3657
  108. Helling C, Dehn M, Woitke P, Hauschildt PH (2008b) Consistent simulations of substellar atmospheres and nonequilibrium dust cloud formation. Ap J 675:L105–L108. doi: 10.1086/533462; arXiv:0801.3733
  109. Helling C, Woitke P, Thi WF (2008c) Dust in brown dwarfs and extra-solar planets I: chemical composition and spectral appearance of quasi-static cloud layers. A&A 485:547–560. doi: 10.1051/0004-6361:20078220 ; arXiv:0803.4315
  110. Helling C, Jardine M, Mokler F (2011a) Ionization in atmospheres of brown dwarfs and extrasolar planets II: dust-induced collisional ionization. Ap J 737:38. doi: 10.1088/0004-637X/737/1/38; arXiv:1105.4409
  111. Helling C, Jardine M, Witte S, Diver DA (2011b) Ionization in atmospheres of brown dwarfs and extrasolar planets I: the role of electron Avalanche. Ap J 727:4. doi: 10.1088/0004-637X/727/1/4; arXiv:1010.4389
  112. Helling C, Jardine M, Stark C, Diver D (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets III: breakdown conditions for mineral clouds. Ap J 767:136. doi: 10.1088/0004-637X/767/2/136; arXiv:1301.7586
  113. Henry RBC, Worthey G (1999) The distribution of heavy elements in spiral and elliptical galaxies. PASP 111:919–945. doi: 10.1086/316403; arXiv:astro-ph/9904017
  114. Hill C, Yurchenko SN, Tennyson J (2013) Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. Icarus 226:1673–1677. doi: 10.1016/j.icarus.2012.07.028; arXiv:1205.6514
  115. Iraci LT, Phebus BD, Stone BM, Colaprete A (2010) Water ice cloud formation on Mars is more difficult than presumed: Laboratory studies of ice nucleation on surrogate materials. Icarus 210:985–991. doi: 10.1016/j.icarus.2010.07.020 ADSCrossRefGoogle Scholar
  116. James DJ, Jardine MM, Jeffries RD, Randich S, Collier Cameron A, Ferreira M (2000) X-ray emission from nearby M-dwarfs: the super-saturation phenomenon. MNRAS 318:1217–1226. doi: 10.1046/j.1365-8711.2000.03838.x; arXiv:astro-ph/0007159
  117. Joergens V (ed) (2014) 50 years of brown dwarfs: from prediction to discovery to forefront of research. Astrophys Sp Sci Libr vol 401. doi: 10.1007/978-3-319-01162-2
  118. Khandrika H, Burgasser AJ, Melis C, Luk C, Bowsher E, Swift B (2013) A Search for photometric variability in L- and T-type brown dwarf atmospheres. Ap J 145:71. doi: 10.1088/0004-6256/145/3/71; arXiv:1301.0545
  119. Kirkpatrick JD (2013) Cold brown dwarfs with WISE: Y dwarfs and the field mass function. Astronomische Nachrichten 334:26–31. doi: 10.1002/asna.201211759 ADSCrossRefGoogle Scholar
  120. Kirkpatrick JD, Reid IN, Liebert J, Cutri RM, Nelson B, Beichman CA, Dahn CC, Monet DG, Gizis JE, Skrutskie MF (1999) Dwarfs cooler than “M” the definition of spectral type ‘L’ using discoveries from the 2 micron all-sky survey (2MASS). Ap J 519:802–833. doi: 10.1086/307414
  121. Kirkpatrick JD, Cruz KL, Barman TS, Burgasser AJ, Looper DL, Tinney CG, Gelino CR, Lowrance PJ, Liebert J, Carpenter JM, Hillenbrand LA, Stauffer JR (2008) A sample of very young field L dwarfs and implications for the brown dwarf “Lithium Test” at early ages. Ap J 689:1295–1326. doi: 10.1086/592768; arXiv:0808.3153
  122. Kirkpatrick JD, Looper DL, Burgasser AJ, Schurr SD, Cutri RM, Cushing MC, Cruz KL, Sweet AC, Knapp GR, Barman TS, Bochanski JJ, Roellig TL, McLean IS, McGovern MR, Rice EL (2010) Discoveries from a near-infrared proper motion survey using multi-epoch two micron all-sky survey data. Ap J 190:100–146. doi: 10.1088/0067-0049/190/1/100; arXiv:1008.3591
  123. Kirkpatrick JD, Cushing MC, Gelino CR, Griffith RL, Skrutskie MF, Marsh KA, Wright EL, Mainzer A, Eisenhardt PR, McLean IS, Thompson MA, Bauer JM, Benford DJ, Bridge CR, Lake SE, Petty SM, Stanford SA, Tsai CW, Bailey V, Beichman CA, Bloom JS, Bochanski JJ, Burgasser AJ, Capak PL, Cruz KL, Hinz PM, Kartaltepe JS, Knox RP, Manohar S, Masters D, Morales-Calderón M, Prato LA, Rodigas TJ, Salvato M, Schurr SD, Scoville NZ, Simcoe RA, Stapelfeldt KR, Stern D, Stock ND, Vacca WD (2011) The first hundred brown dwarfs discovered by the wide-field infrared survey explorer (WISE). Ap J 197:19. doi: 10.1088/0067-0049/197/2/19; arXiv:1108.4677
  124. Kirkpatrick JD, Gelino CR, Cushing MC, Mace GN, Griffith RL, Skrutskie MF, Marsh KA, Wright EL, Eisenhardt PR, McLean IS, Mainzer AK, Burgasser AJ, Tinney CG, Parker S, Salter G (2012) Further defining spectral type “Y” and exploring the low-mass end of the field brown dwarf mass function. Ap J 753:156. doi: 10.1088/0004-637X/753/2/156; arXiv:1205.2122
  125. Kirkpatrick JD, Cushing MC, Gelino CR, Beichman CA, Tinney CG, Faherty JK, Schneider A, Mace GN (2013) Discovery of the Y1 dwarf WISE J064723.23–623235.5. Ap J 776:128. doi: 10.1088/0004-637X/776/2/128; arXiv:1308.5372
  126. Kirkpatrick JD, Schneider A, Fajardo-Acosta S, Gelino CR, Mace GN, Wright EL, Logsdon SE, McLean IS, Cushing MC, Skrutskie MF, Eisenhardt PR, Stern D, Balokovic M, Burgasser AJ, Faherty JK, Lansbury GB, Rich JA, Skrzypek N, Fowler JW, Cutri RM, Masci FJ, Conrow T, Grillmair CJ, McCallon HL, Beichman CA, Marsh KA (2014) The AllWISE motion survey and the quest for cold subdwarfs. arXiv:1402:0661
  127. Knutson HA, Charbonneau D, Cowan NB, Fortney JJ, Showman AP, Agol E, Henry GW, Everett ME, Allen LE (2009) Multiwavelength constraints on the day-night circulation patterns of HD 189733b. Ap J 690:822–836. doi: 10.1088/0004-637X/690/1/822; arXiv:0802.1705
  128. Konopka U, Mokler F, Ivlev AV, Kretschmer M, Morfill GE, Thomas HM, Rothermel H, Fortov VE, Lipaev AM, Molotkov VI, Nefedov AP, Baturin YM, Budarin Y, Ivanov AI, Roth M (2005) Charge-induced gelation of microparticles. New J Phys 7:227. doi: 10.1088/1367-2630/7/1/227 CrossRefGoogle Scholar
  129. Lee JM, Heng K, Irwin PGJ (2013) Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. Ap J 778:97. doi: 10.1088/0004-637X/778/2/97; arXiv:1307.1404
  130. Lépine S, Rich RM, Shara MM (2007) Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Ap J 669:1235–1247. doi: 10.1086/521614; arXiv:0707.2993
  131. Liebert J, Kirkpatrick JD, Cruz KL, Reid IN, Burgasser A, Tinney CG, Gizis JE (2003) A flaring L5 dwarf: the nature of \(\text{ H }\alpha \) emission in very low mass (sub)stellar objects. Ap J 125:343–347. doi: 10.1086/345514; arXiv:astro-ph/0210348
  132. Line MR, Fortney JJ, Marley MS, Sorahana S (2014) An approach for retrieving temperatures and abundances in brown dwarf atmospheres. arXiv:1403:6412
  133. Littlefair SP, Dhillon VS, Marsh TR, Shahbaz T, Martín EL, Copperwheat C (2008) Optical variability of the ultracool dwarf TVLM 513–46546: evidence for inhomogeneous dust clouds. MNRAS 391:L88–L92. doi: 10.1111/j.1745-3933.2008.00562.x; arXiv:0809.2193
  134. Liu MC, Dupuy TJ, Leggett SK (2010) Discovery of a highly unequal-mass binary T dwarf with Keck Laser guide star adaptive optics: a coevality test of substellar theoretical models and effective temperatures. Ap J 722:311–328. doi: 10.1088/0004-637X/722/1/311; arXiv:1008.2200
  135. Lodders K, Fegley B (2002) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars I: carbon, nitrogen, and oxygen. Icarus 155:393–424. doi: 10.1006/icar.2001.6740 ADSCrossRefGoogle Scholar
  136. Lodders K, Fegley B Jr (2006) Chemistry of low mass substellar objects. p 1. doi: 10.1007/3-540-30313-8_1
  137. Lodieu N, Zapatero Osorio MR, Martín EL, Solano E, Aberasturi M (2010) GTC/OSIRIS spectroscopic identification of a faint L subdwarf in the UKIRT infrared deep sky survey. Ap J 708:L107–L111. doi: 10.1088/2041-8205/708/2/L107; arXiv:0912.3364
  138. Lodieu N, Espinoza Contreras M, Zapatero Osorio MR, Solano E, Aberasturi M, Martín EL (2012) New ultracool subdwarfs identified in large-scale surveys using virtual observatory tools I: UKIDSS LAS DR5 vs. SDSS DR7. A&A 542:A105. doi: 10.1051/0004-6361/201118717; arXiv:1204.4328
  139. Lucas PW, Roche PF, Allard F, Hauschildt PH (2001) Infrared spectroscopy of substellar objects in Orion. MNRAS 326:695–721. doi: 10.1046/j.1365-8711.2001.04666.x; arXiv:astro-ph/0105154
  140. Ludwig HG, Allard F, Hauschildt PH (2002) Numerical simulations of surface convection in a late M-dwarf. A&A 395:99–115. doi: 10.1051/0004-6361:20021153; arXiv:astro-ph/0208584
  141. Luhman KL (2012) The formation and early evolution of low-mass stars and brown dwarfs. ARA&A 50:65–106. doi: 10.1146/annurev-astro-081811-125528; arXiv:1208.5800
  142. Luhman KL (2013) Discovery of a binary brown dwarf at 2 pc from the Sun. Ap J 767:L1. doi: 10.1088/2041-8205/767/1/L1; arXiv:1303.2401
  143. Luhman KL (2014) Discovery of a\({}^{\sim }\)250 K brown dwarf at 2 pc from the Sun. Ap J 786:L18. doi: 10.1088/2041-8205/786/2/L18; arXiv:1404.6501
  144. Luhman KL, Burgasser AJ, Bochanski JJ (2011) Discovery of a candidate for the coolest known brown dwarf. Ap J 730:L9. doi: 10.1088/2041-8205/730/1/L9; arXiv:1102.5411
  145. Luhman KL, Burgasser AJ, Labbé I, Saumon D, Marley MS, Bochanski JJ, Monson AJ, Persson SE (2012) Confirmation of one of the coldest known brown dwarfs. Ap J 744:135. doi: 10.1088/0004-637X/744/2/135; arXiv:1110.4353
  146. Lunine JI, Hubbard WB, Marley MS (1986) Evolution and infrared spectra of brown dwarfs. Ap J 310:238–260. doi: 10.1086/164678 ADSCrossRefGoogle Scholar
  147. Mace GN, Kirkpatrick JD, Cushing MC, Gelino CR, McLean IS, Logsdon SE, Wright EL, Skrutskie MF, Beichman CA, Eisenhardt PR, Kulas KR (2013) The exemplar T8 subdwarf companion of Wolf 1130. Ap J 777:36. doi: 10.1088/0004-637X/777/1/36; arXiv:1309.1500
  148. Madhusudhan N, Seager S (2009) A temperature and abundance retrieval method for exoplanet atmospheres. Ap J 707:24–39. doi: 10.1088/0004-637X/707/1/24; arXiv:0910.1347
  149. Madhusudhan N, Burrows A, Currie T (2011) Model atmospheres for massive gas giants with thick clouds: application to the HR 8799 planets and predictions for future detections. Ap J 737:34. doi: 10.1088/0004-637X/737/1/34; arXiv:1102.5089
  150. Marley MS, Saumon D, Goldblatt C (2010) A patchy cloud model for the L to T dwarf transition. Ap J 723:L117–L121. doi: 10.1088/2041-8205/723/1/L117; arXiv:1009.6217
  151. Marley MS, Saumon D, Cushing M, Ackerman AS, Fortney JJ, Freedman R (2012) Masses, radii, and cloud properties of the HR 8799 planets. Ap J 754:135. doi: 10.1088/0004-637X/754/2/135; arXiv:1205.6488
  152. Marley MS, Ackerman AS, Cuzzi JN, Kitzmann D (2013) Clouds and hazes in exoplanet atmospheres. arXiv:1301:5627
  153. Martín EL, Delfosse X, Basri G, Goldman B, Forveille T, Zapatero Osorio MR (1999) Spectroscopic classification of late-M and L field dwarfs. Ap J 118:2466–2482. doi: 10.1086/301107
  154. Maxted PFL, Napiwotzki R, Dobbie PD, Burleigh MR (2006) Survival of a brown dwarf after engulfment by a red giant star. Nature 442:543–545. doi: 10.1038/nature04987; arXiv:astro-ph/0608054
  155. McLean M, Berger E, Irwin J, Forbrich J, Reiners A (2011) Periodic radio emission from the M7 dwarf 2MASS J13142039+1320011: implications for the magnetic field topology. Ap J 741:27. doi: 10.1088/0004-637X/741/1/27; arXiv:1107.1516
  156. Metchev S, Apai D, Radigan J, Artigau É, Heinze A, Helling C, Homeier D, Littlefair S, Morley C, Skemer A, Stark C (2013) Clouds in brown dwarfs and giant planets. Astronomische Nachrichten 334:40–43. doi: 10.1002/asna.201211776 ADSCrossRefGoogle Scholar
  157. Mihalas DM (1978) Stellar atmospheres, 2nd edn. W. H. Freeman & Co Ltd. ISBN-10: 0716703599; ISBN-13: 978-0716703594Google Scholar
  158. Mohanty S, Basri G, Shu F, Allard F, Chabrier G (2002) Activity in very cool stars: magnetic dissipation in late M and L dwarf atmospheres. Ap J 571:469–486. doi: 10.1086/339911; arXiv:astro-ph/0201518
  159. Morin J, Donati JF, Petit P, Delfosse X, Forveille T, Jardine MM (2010) Large-scale magnetic topologies of late M dwarfs. MNRAS 407:2269–2286. doi: 10.1111/j.1365-2966.2010.17101.x; arXiv:1005.5552
  160. Morioka A, Miyoshi Y, Kitamura N, Misawa H, Tsuchiya F, Menietti JD, Honary F (2012) Fundamental characteristics of field-aligned auroral acceleration derived from akr spectra. JGR 117(A2):A02,213. doi: 10.1029/2011ja017137
  161. Morley CV, Fortney JJ, Marley MS, Visscher C, Saumon D, Leggett SK (2012) Neglected clouds in T and Y dwarf atmospheres. Ap J 756:172. doi: 10.1088/0004-637X/756/2/172; arXiv:1206.4313
  162. Morley CV, Marley MS, Fortney JJ, Lupu R (2014a) Spectral variability from the patchy atmospheres of T and Y dwarfs. Ap J arXiv:1406.0863
  163. Morley CV, Marley MS, Fortney JJ, Lupu R, Saumon D, Greene T, Lodders K (2014b) Water clouds in Y dwarfs and exoplanets. Ap J. arXiv:1404:0005
  164. Moses JI, Visscher C, Fortney JJ, Showman AP, Lewis NK, Griffith CA, Klippenstein SJ, Shabram M, Friedson AJ, Marley MS, Freedman RS (2011) Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Ap J 737:15. doi: 10.1088/0004-637X/737/1/15; arXiv:1102.0063
  165. Nakajima T, Oppenheimer BR, Kulkarni SR, Golimowski DA, Matthews K, Durrance ST (1995) Discovery of a cool brown dwarf. Nature 378:463–465. doi: 10.1038/378463a0 ADSCrossRefGoogle Scholar
  166. Nichols JD, Burleigh MR, Casewell SL, Cowley SWH, Wynn GA, Clarke JT, West AA (2012) Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Ap J 760(1):59. doi: 10.1088/0004-637x/760/1/59 ADSCrossRefGoogle Scholar
  167. Noll KS, Geballe TR, Marley MS (1997) Detection of abundant carbon monoxide in the brown dwarf Gliese 229B. Ap J 489:L87. doi: 10.1086/310954 ADSCrossRefGoogle Scholar
  168. Noyes RW, Hartmann LW, Baliunas SL, Duncan DK, Vaughan AH (1984) Rotation, convection, and magnetic activity in lower main-sequence stars. Ap J 279:763–777. doi: 10.1086/161945 ADSCrossRefGoogle Scholar
  169. Osten RA, Hawley SL, Bastian TS, Reid IN (2006) The radio spectrum of TVLM 513–46546: constraints on the coronal properties of a late M dwarf. Ap J 637:518–521. doi: 10.1086/498345; arXiv:astro-ph/0509762
  170. Patience J, King RR, De Rosa RJ, Vigan A, Witte S, Rice E, Helling C, Hauschildt P (2012) Spectroscopy across the brown dwarf/planetary mass boundary I: near-infrared JHK spectra. A&A 540:A85. doi: 10.1051/0004-6361/201118058; arXiv:1201.3921
  171. Peña Ramírez K, Béjar VJS, Zapatero Osorio MR, Petr-Gotzens MG, Martín EL (2012) New isolated planetary-mass objects and the stellar and substellar mass function of the \(\sigma \) Orionis cluster. Ap J 754:30. doi: 10.1088/0004-637X/754/1/30; arXiv:1205.4950
  172. Pereira TMD, Asplund M, Collet R, Thaler I, Trampedach R, Leenaarts J (2013) How realistic are solar model atmospheres? A&A 554:A118. doi: 10.1051/0004-6361/201321227; arXiv:1304.4932
  173. Pinfield DJ, Jones HRA, Lucas PW, Kendall TR, Folkes SL, Day-Jones AC, Chappelle RJ, Steele IA (2006) Finding benchmark brown dwarfs to probe the substellar initial mass function as a function of time. MNRAS 368:1281–1295. doi: 10.1111/j.1365-2966.2006.10213.x arXiv:astro-ph/0603320
  174. Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. A&A 397:147–157. doi: 10.1051/0004-6361:20021560 ADSCrossRefGoogle Scholar
  175. Radigan J, Jayawardhana R, Lafrenière D, Artigau É, Marley M, Saumon D (2012) Large-amplitude variations of an L/T transition brown dwarf: multi-wavelength observations of patchy. High-contrast cloud features. Ap J 750:105. doi: 10.1088/0004-637X/750/2/105; arXiv:1201.3403
  176. Radigan J, Lafrenière D, Jayawardhana R, Artigau E (2014) Strong brightness variations signal cloudy-to-clear transition of brown dwarfs. arXiv:1404.3247
  177. Rajpurohit AS, Reylé C, Schultheis M, Leinert C, Allard F, Homeier D, Ratzka T, Abraham P, Moster B, Witte S, Ryde N (2012) The very low mass multiple system LHS 1070: a testbed for model atmospheres for the lower end of the main sequence. A&A 545:A85. doi: 10.1051/0004-6361/201219029; arXiv:1208.0452
  178. Ravi V, Hallinan G, Hobbs G, Champion DJ (2011) The magnetosphere of the ultracool dwarf DENIS 1048–3956. Ap J 735:L2. doi: 10.1088/2041-8205/735/1/L2; arXiv:1105.0990
  179. Rebolo R, Zapatero Osorio MR, Martín EL (1995) Discovery of a brown dwarf in the Pleiades star cluster. Nature 377:129–131. doi: 10.1038/377129a0 ADSCrossRefGoogle Scholar
  180. Reid IN, Burgasser AJ, Cruz KL, Kirkpatrick JD, Gizis JE (2001) Near-infrared spectral classification of late M and L dwarfs. Ap J 121:1710–1721. doi: 10.1086/319418; arXiv:astro-ph/0012275
  181. Reid IN, Cruz KL, Kirkpatrick JD, Allen PR, Mungall F, Liebert J, Lowrance P, Sweet A (2008) Meeting the cool neighbors X: ultracool dwarfs from the 2MASS all-sky data release. Ap J 136:1290–1311. doi: 10.1088/0004-6256/136/3/1290 ADSGoogle Scholar
  182. Reiners A, Basri G, Christensen UR (2009) Surprisingly weak magnetism on young accreting brown dwarfs. Ap J 697:373–379. doi: 10.1088/0004-637X/697/1/373; arXiv:0903.0857
  183. Rice EL, Faherty JK, Cruz K, Barman T, Looper D, Malo L, Mamajek EE, Metchev S, Shkolnik EL (2011) Juvenile ultracool dwarfs. In: Johns-Krull C, Browning MK, West AA (eds) 16th Cambridge workshop on cool stars, stellar systems, and the Sun, Astronomical Society of the Pacific conference series, vol 448, p 481. arXiv:1101.4231
  184. Rimmer PB, Helling C (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets IV: the effect of cosmic rays. Ap J 774:108. doi: 10.1088/0004-637X/774/2/108; arXiv:1307.3257
  185. Rimmer PB, Helling C, Bilger C (2014) The influence of galactic cosmic rays on ion-neutral hydrocarbon chemistry in the upper atmospheres of free-floating exoplanets. arXiv:1312.1138
  186. Robinson TD, Marley MS (2014) Temperature fluctuations as a source of brown dwarf variability. arXiv:1403.2438
  187. Rojas-Ayala B, Hilton EJ, Mann AW, Lépine S, Gaidos E, Bonfils X, Helling C, Henry TJ, Rogers LA, von Braun K, Youdin A (2013) M dwarf stars in the light of (future) exoplanet searches. Astronomische Nachrichten 334:155. doi: 10.1002/asna.201211760; arXiv:1211.0544
  188. Rossow WB (1978) Cloud microphysics: analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus 36:1–50. doi: 10.1016/0019-1035(78)90072-6 ADSCrossRefGoogle Scholar
  189. Route M, Wolszczan A (2012) The arecibo detection of the coolest radio-flaring brown dwarf. Ap J 747(2):L22. doi: 10.1088/2041-8205/747/2/l22 ADSCrossRefGoogle Scholar
  190. Sarro LM, Berihuete A, Carrión C, Barrado D, Cruz P, Isasi Y (2013) Properties of ultra-cool dwarfs with Gaia: an assessment of the accuracy for the temperature determination. A&A 550:A44. doi: 10.1051/0004-6361/201219867; arXiv:1212.3096
  191. Saumon D, Bergeron P, Lunine JI, Hubbard WB, Burrows A (1994) Cool zero-metallicity stellar atmospheres. Ap J 424:333–344. doi: 10.1086/173892 ADSCrossRefGoogle Scholar
  192. Saumon D, Geballe TR, Leggett SK, Marley MS, Freedman RS, Lodders K, Fegley B Jr, Sengupta SK (2000) Molecular abundances in the atmosphere of the T dwarf GL 229B. Ap J 541:374–389. doi: 10.1086/309410; astro-ph/0003353
  193. Saunders RW, Forster PM, Plane JMC (2007) Potential climatic effects of meteoric smoke in the Earth’s paleo-atmosphere. Geophys Rev Lett 34:L16801. doi: 10.1029/2007GL029648 ADSCrossRefGoogle Scholar
  194. Schmidt SJ, Cruz KL, Bongiorno BJ, Liebert J, Reid IN (2007) Activity and kinematics of ultracool dwarfs, including an amazing flare observation. Ap J 133:2258–2273. doi: 10.1086/512158; arXiv:astro-ph/0701055
  195. Showman AP, Kaspi Y (2013a) Atmospheric dynamics of brown dwarfs and directly imaged giant planets. Ap J 776:85. doi: 10.1088/0004-637X/776/2/85; arXiv:1210.7573
  196. Showman AP, Kaspi Y (2013b) Atmospheric dynamics of brown dwarfs and directly imaged giant planets. Ap J 776:85. doi: 10.1088/0004-637X/776/2/85; arXiv:1210.7573
  197. Sinclair JA, Helling C, Greaves JS (2010) The impact of stellar model spectra in disc detection. MNRAS 409:L49–L53. doi: 10.1111/j.1745-3933.2010.00945.x ADSCrossRefGoogle Scholar
  198. Sivarani T, Lépine S, Kembhavi AK, Gupchup J (2009) SDSS J125637–022452: a high proper motion L subdwarf. Ap J 694:L140–L143. doi: 10.1088/0004-637X/694/2/L140; arXiv:0901.3382
  199. Siverd RJ et al (2012) KELT-1b: a strongly irradiated, highly inflated, short period, 27 Jupiter-mass companion transiting a Mid-F Star. Ap J 761:123. doi: 10.1088/0004-637X/761/2/123; arXiv:1206.1635
  200. Sorahana S, Yamamura I, Murakami H (2013) On the radii of brown dwarfs measured with AKARI near-infrared spectroscopy. Ap J 767:77. doi: 10.1088/0004-637X/767/1/77; arXiv:1304.1259
  201. Sorahana S, Suzuki TK, Yamamura I (2014) A signature of chromospheric activity in brown dwarfs revealed by 2.5-5.0 Micron AKARI spectra. arXiv:1401.5801
  202. Southworth J (2009) Homogeneous studies of transiting extrasolar planets II: physical properties. MNRAS 394:272–294. doi: 10.1111/j.1365-2966.2008.14274.x; arXiv:0811.3277
  203. Spezzi L, Alves de Oliveira C, Moraux E, Bouvier J, Winston E, Hudelot P, Bouy H, Cuillandre JC (2012) Searching for planetary-mass T-dwarfs in the core of Serpens. A&A 545:A105. doi: 10.1051/0004-6361/201219559; arXiv:1208.0702
  204. Stark CR, Helling C, Diver DA, Rimmer PB (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets. V. Alfvén ionization. Ap J 776:11. doi: 10.1088/0004-637X/776/1/11; arXiv:1308.2991
  205. Steele PR, Saglia RP, Burleigh MR, Marsh TR, Gänsicke BT, Lawrie K, Cappetta M, Girven J, Napiwotzki R (2013) NLTT 5306: the shortest period detached white dwarf+brown dwarf binary. MNRAS 429:3492–3500. doi: 10.1093/mnras/sts620; arXiv:1212.2899
  206. Stelzer B, Neuhäuser R (2003) X-ray emission from old and intermediate age brown dwarfs. In: Martín E (ed) Brown dwarfs, IAU symposium, vol 211, p 443. arXiv:astro-ph/0206284
  207. Stelzer B, Micela G, Flaccomio E, Neuhäuser R, Jayawardhana R (2006) X-ray emission of brown dwarfs: towards constraining the dependence on age, luminosity, and temperature. A&A 448:293–304. doi: 10.1051/0004-6361:20053677; arXiv:astro-ph/0511168
  208. Stewart RT, Innis JL, Slee OB, Nelson GJ, Wright AE (1988) A relation between radio luminosity and rotation for late-type stars. Ap J 96:371–377. doi: 10.1086/114815 ADSGoogle Scholar
  209. Tinney CG, Tolley AJ (1999a) Searching for weather in brown dwarfs. MNRAS 304:119–126. doi: 10.1046/j.1365-8711.1999.02297.x; arXiv:astro-ph/9809165
  210. Tinney CG, Tolley AJ (1999b) Searching for weather in brown dwarfs. MNRAS 304:119–126. doi: 10.1046/j.1365-8711.1999.02297.x; arXiv:astro-ph/9809165
  211. Treumann R (2006) The electron-cyclotron maser for astrophysical application. A&A Rev 13(4):229–315. doi: 10.1007/s00159-006-0001-y ADSCrossRefGoogle Scholar
  212. Triaud AHMJ, Gillon M, Selsis F, Winn JN, Demory BO, Artigau E, Laughlin GP, Seager S, Helling C, Mayor M, Albert L, Anderson RI, Bolmont E, Doyon R, Forveille T, Hagelberg J, Leconte J, Lendl M, Littlefair S, Raymond S, Sahlmann J (2013) A search for rocky planets transiting brown dwarfs. arXiv:1304.7248
  213. Tsuji T (2001) Unified model photospheres for ultracool dwarfs of types L and T. In: Jones HRA, Steele IA (eds) Ultracool dwarfs: new spectral types L and T, p 9. arXiv:astro-ph/0103395
  214. Tsuji T (2002) Dust in the photospheric environment: unified cloudy models of M, L, and T dwarfs. Ap J 575:264–290. doi: 10.1086/341262; arXiv:astro-ph/0204401
  215. Tsuji T (2005) Dust in the photospheric environment III: a fundamental element in the characterization of ultracool dwarfs. Ap J 621:1033–1048. doi: 10.1086/427747; arXiv:astro-ph/0411766
  216. Tsuji T, Ohnaka K, Aoki W (1996a) Dust formation in stellar photospheres: a case of very low mass stars and a possible resolution on the effective temperature scale of M dwarfs. A&A 305:L1ADSGoogle Scholar
  217. Tsuji T, Ohnaka K, Aoki W, Nakajima T (1996b) Evolution of dusty photospheres through red to brown dwarfs: how dust forms in very low mass objects. A&A 308:L29–L32ADSGoogle Scholar
  218. Tsuji T, Nakajima T, Yanagisawa K (2004) Dust in the photospheric environment II: effect on the near-infrared spectra of L and T dwarfs. Ap J 607:511–529. doi: 10.1086/383300; arXiv:astro-ph/0402192
  219. Tsuji T, Yamamura I, Sorahana S (2011) AKARI observations of brown dwarfs II: \(\text{ CO }_{2}\) as probe of carbon and oxygen abundances in brown dwarfs. Ap J 734:73. doi: 10.1088/0004-637X/734/2/73; arXiv:1105.6303
  220. Venot O, Hébrard E, Agúndez M, Dobrijevic M, Selsis F, Hersant F, Iro N, Bounaceur R (2012) A chemical model for the atmosphere of hot Jupiters. A&A 546:A43. doi: 10.1051/0004-6361/201219310; arXiv:1208.0560
  221. Wada K, Tanaka H, Okuzumi S, Kobayashi H, Suyama T, Kimura H, Yamamoto T (2013) Growth efficiency of dust aggregates through collisions with high mass ratios. A&A 559:A62. doi: 10.1051/0004-6361/201322259 ADSCrossRefGoogle Scholar
  222. Williams PKG (2013) The observed rotation/activity relations of ultracool dwarfs. Mem Societa Astronomica Italiana 84:1122ADSGoogle Scholar
  223. Williams PKG, Berger E, Zauderer BA (2013a) Quasi-quiescent radio emission from the first radio-emitting T dwarf. Ap J 767:L30. doi: 10.1088/2041-8205/767/2/L30; arXiv:1301.2321
  224. Williams PKG, Cook BA, Berger E (2013b) Trends in ultracool dwarf magnetism I: X-ray suppression and radio enhancement. arXiv:1310.6757
  225. Wilson PA, Rajan A, Patience J (2014) The brown dwarf atmosphere monitoring (BAM) project I: the largest near-IR monitoring survey of L and T dwarfs. A&A 566:A111. doi: 10.1051/0004-6361/201322995; arXiv:1404.4633
  226. Witte S, Helling C, Hauschildt PH (2009) Dust in brown dwarfs and extra-solar planets II: cloud formation for cosmologically evolving abundances. A&A 506:1367–1380. doi: 10.1051/0004-6361/200811501; arXiv:0908.3597
  227. Witte S, Helling C, Barman T, Heidrich N, Hauschildt PH (2011) Dust in brown dwarfs and extra-solar planets III: testing synthetic spectra on observations. A&A 529:A44. doi: 10.1051/0004-6361/201014105 ADSCrossRefGoogle Scholar
  228. Woitke P (2006) Too little radiation pressure on dust in the winds of oxygen-rich AGB stars. A&A 460:L9–L12. doi: 10.1051/0004-6361:20066322; arXiv:astro-ph/0609392
  229. Woitke P, Helling C (2003) Dust in brown dwarfs II: the coupled problem of dust formation and sedimentation. A&A 399:297–313. doi: 10.1051/0004-6361:20021734 ADSCrossRefGoogle Scholar
  230. Woitke P, Helling C (2004) Dust in brown dwarfs III: formation and structure of quasi-static cloud layers. A&A 414:335–350. doi: 10.1051/0004-6361:20031605 ADSCrossRefGoogle Scholar
  231. Yamamura I, Tsuji T, Tanabé T (2010) AKARI observations of brown dwarfs I: CO and \(\text{ CO }_{2}\) bands in the near-infrared spectra. Ap J 722:682–698. doi: 10.1088/0004-637X/722/1/682; arXiv:1008.3732
  232. Yuan TT, Kewley LJ, Swinbank AM, Richard J, Livermore RC (2011) Metallicity gradient of a lensed face-on spiral galaxy at Redshift 1.49. Ap J 732:L14. doi: 10.1088/2041-8205/732/1/L14; arXiv:1103.3277
  233. Zhang X, Showman AP (2014) Atmospheric circulation of brown dwarfs: jets, vortices, and time variability. arXiv:1403.2143

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.SUPAUniversity of St AndrewsSt AndrewsUK
  2. 2.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations