Advertisement

The origin of galactic cosmic rays

  • Pasquale BlasiEmail author
REVIEW ARTICLE

Abstract

One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data.

I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy.

In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of research has recently experienced a remarkable growth, in that lines have been found to bear information on the cosmic-ray acceleration efficiency of supernova shocks.

Keywords

Cosmic rays Acceleration 

Notes

Acknowledgements

The author is grateful to his friends and colleagues in the Arcetri High Energy Astrophysics Group, R. Aloisio, E. Amato, R. Bandiera, N. Bucciantini, G. Morlino, O. Petruk for daily discussions on everything, as well as to D. Caprioli and P.D. Serpico for continuous collaboration and to Tom Gaisser for providing Fig. 1. The author is also grateful to Tony Bell for a long discussion at the Aspen Center for Physics. This work was completed while at the Aspen Center for Physics, supported in part by the National Science Foundation under Grant No. PHYS-1066293, by the Simons Foundation and by PRIN INAF 2010.

References

  1. Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Andeen K, Auffenberg J, Bai X, Baker M, Barwick SW, Baum V, Bay R, Beattie K, Beatty JJ, Bechet S, Becker JK, Becker KH, Bell M, Benabderrahmane ML, Benzvi S, Berdermann J, Berghaus P, Berley D, Bernardini E, Bertrand D, Besson DZ, Bindig D, Bissok M, Blaufuss E, Blumenthal J, Boersma DJ, Bohm C, Bose D, Böser S, Botner O, Brayeur L, Brown AM, Bruijn R, Brunner J, Buitink S, Caballero-Mora KS, Carson M, Casey J, Casier M, Chirkin D, Christy B, Clevermann F, Cohen S, Cowen DF, Silva AHC, Danninger M, Daughhetee J, Davis JC, Clercq CD, Descamps F, Desiati P, de Vries-Uiterweerd G, Deyoung T, Díaz-Vélez JC, Dreyer J, Dumm JP, Dunkman M, Eagan R, Eisch J, Ellsworth RW, Engdegård O, Euler S, Evenson PA, Fadiran O, Fazely AR, Fedynitch A, Feintzeig J, Feusels T, Filimonov K, Finley C, Fischer-Wasels T, Flis S, Franckowiak A, Franke R, Frantzen K, Fuchs T, Gaisser TK, Gallagher J, Gerhardt L, Gladstone L, Glüsenkamp T, Goldschmidt A, Goodman JA, Góra D, Grant D, GroßA, Grullon S, Gurtner M, Ha C, Ismail AH, Hallgren A, Halzen F, Hanson K, Heereman D, Heimann P, Heinen D, Helbing K, Hellauer R, Hickford S, Hill GC, Hoffman KD, Hoffmann R, Homeier A, Hoshina K, Huelsnitz W, Hulth PO, Hultqvist K, Hussain S, Ishihara A, Jacobi E, Jacobsen J, Japaridze GS, Jlelati O, Johansson H, Kappes A, Karg T, Karle A, Kiryluk J, Kislat F, Kläs J, Klein SR, Köhne JH, Kohnen G, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krasberg M, Kroll G, Kunnen J, Kurahashi N, Kuwabara T, Labare M, Laihem K, Landsman H, Larson MJ, Lauer R, Lesiak-Bzdak M, Lünemann J, Madsen J, Maruyama R, Mase K, Matis HS, Mcnally F, Meagher K, Merck M, Mészáros P, Meures T, Miarecki S, Middell E, Milke N, Miller J, Mohrmann L, Montaruli T, Morse R, Movit SM, Nahnhauer R, Naumann U, Nowicki SC, Nygren DR, Obertacke A, Odrowski S, Olivas A, Olivo M, O’Murchadha A, Panknin S, Paul L, Pepper JA, de los Heros CP, Pieloth D, Pirk N, Posselt J, Price PB, Przybylski GT, Rädel L, Rawlins K, Redl P, Resconi E, Rhode W, Ribordy M, Richman M, Riedel B, Rodrigues JP, Rothmaier F, Rott C, Ruhe T, Rutledge D, Ruzybayev B, Ryckbosch D, Salameh T, Sander HG, Santander M, Sarkar S, Saba SM, Schatto K, Scheel M, Scheriau F, Schmidt T, Schmitz M, Schoenen S, Schöneberg S, Schönherr L, Schönwald A, Schukraft A, Schulte L, Schulz O, Seckel D, Seo SH, Sestayo Y, Seunarine S, Smith MWE, Soiron M, Soldin D, Spiczak GM, Spiering C, Stamatikos M, Stanev T, Stasik A, Stezelberger T, Stokstad RG, Stößl A, Strahler EA, Ström R, Sullivan GW, Taavola H, Taboada I, Tamburro A, Ter-Antonyan S, Tilav S, Toale PA, Toscano S, Usner M, van Eijndhoven N, van der Drift D, Overloop AV, van Santen J, Vehring M, Voge M, Walck C, Waldenmaier T, Wallraff M, Walter M, Wasserman R, Weaver C, Wendt C, Westerhoff S, Whitehorn N, Wiebe K, Wiebusch CH, Williams DR, Wissing H, Wolf M, Wood TR, Woschnagg K, Xu C, Xu DL, Xu XW, Yanez JP, Yodh G, Yoshida S, Zarzhitsky P, Ziemann J, Zilles A, Zoll M (I Collaboration) (2013) Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of Icetop and Icecube. Astropart Phys 42:15. doi: 10.1016/j.astropartphys.2012.11.003 ADSGoogle Scholar
  2. Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, Digel SW, Dormody M, EdCe S, Drell PS, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hays E, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Katsuta J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kuss M, Lande J, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Makeev A, Mazziotta MN, McEnery JE, Meurer C, Michelson PF, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Omodei N, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Ritz S, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Schalk TL, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamazaki R, Ylinen T, Ziegler M (2009) Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys J 706:L1–L6. doi: 10.1088/0004-637X/706/1/L1. arXiv:0910.0908 ADSGoogle Scholar
  3. Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Carrigan S, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, de Dermer CD, Palma F, EdCe S, Drell PS, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Fukazawa Y, Fukui Y, Funk S, Fusco P, Gargano F, Gehrels N, Germani S, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grove JE, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hays E, Horan D, Hughes RE, Jóhannesson G, Johnson AS, Johnson WN, Kamae T, Katagiri H, Kataoka J, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Llena Garde M, Longo F, Loparco F, Lovellette MN, Lubrano P, Makeev A, Mazziotta MN, Michelson PF, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohno M, Ohsugi T, Omodei N, Orlando E, Ormes JF, Ozaki M, Panetta JH, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rodriguez AY, Roth M, Sadrozinski HFW, Sander A, Saz Parkinson PM, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Uchiyama Y, Uehara T, Usher TL, Vasileiou V, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamamoto H, Yamazaki R, Yang Z, Ylinen T, Ziegler M (2010a) Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys J 718:348–356. doi: 10.1088/0004-637X/718/1/348 ADSGoogle Scholar
  4. Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cognard I, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, Digel SW, do Couto e Silva E, Drell PS, Dubois R, Dumora D, Espinoza C, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hays E, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Katsuta J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kramer M, Kuss M, Lande J, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Lyne AG, Madejski GM, Makeev A, Mazziotta MN, McEnery JE, Meurer C, Michelson PF, Mitthumsiri W, Mizuno T, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Noutsos A, Nuss E, Ohsugi T, Omodei N, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rochester LS, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Stappers BW, Stecker FW, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Theureau G, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamazaki R, Ylinen T, Ziegler M (2010b) Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327:1103. doi: 10.1126/science.1182787 ADSGoogle Scholar
  5. Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, EdCe S, Drell PS, Drlica-Wagner A, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Mazziotta MN, Meurer C, Michelson PF, Mitthumsiri W, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohsugi T, Orlando E, Ormes JF, Ozaki M, Paneque D, Panetta JH, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rochester LS, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Van Etten A, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Ylinen T, Ziegler M (2010c) Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys J 712:459–468. doi: 10.1088/0004-637X/712/1/459. arXiv:1002.2198 ADSGoogle Scholar
  6. Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Chaty S, Chekhtman A, Cheung CC, Chiang J, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, Corbel S, Cutini S, de Angelis A, de Palma F, Dermer CD, Digel SW, Silva EC, Drell PS, Drlica-Wagner A, Dubois R, Dumora D, Favuzzi C, Ferrara EC, Fortin P, Frailis M, Fukazawa Y, Fukui Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Horan D, Jackson MS, Jóhannesson G, Johnson AS, Kamae T, Katagiri H, Kataoka J, Kerr M, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Longo F, Loparco F, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Mazziotta MN, McEnery JE, Michelson PF, Mignani RP, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Naumann-Godo M, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pesce-Rollins M, Pierbattista M, Piron F, Pohl M, Porter TA, Rainò S, Rando R, Razzano M, Reimer O, Reposeur T, Ritz S, Romani RW, Roth M, Sadrozinski HFW, Saz Parkinson PM, Sgrò C, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Troja E, Uchiyama Y, Vandenbroucke J, Vasileiou V, Vianello G, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamamoto H, Yamazaki R, Yang Z, Ziegler M (2011) Observations of the Young supernova remnant RX J1713.7-3946 with the Fermi large area telescope. Astrophys J 734:28. doi: 10.1088/0004-637X/734/1/28. arXiv:1103.5727 ADSGoogle Scholar
  7. Abraham J, Abreu P, Aglietta M, Ahn EJ, Allard D, Allekotte I, Allen J, Alvarez-Muñiz J, Ambrosio M, Anchordoqui L et al. (2010) Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys Rev Lett 104(9):091101. doi: 10.1103/PhysRevLett.104.091101. arXiv:1002.0699 ADSGoogle Scholar
  8. Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Byrum K, Cannon A, Cesarini A, Ciupik L, Collins-Hughes E, Cui W, Dickherber R, Duke C, Errando M, Finley JP, Finnegan G, Fortson L, Furniss A, Galante N, Gall D, Gillanders GH, Godambe S, Griffin S, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Hughes JP, Hui CM, Humensky TB, Kaaret P, Karlsson N, Kertzman M, Kieda D, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Madhavan AS, Maier G, Majumdar P, McArthur S, McCann A, Moriarty P, Mukherjee R, Ong RA, Orr M, Otte AN, Pandel D, Park NH, Perkins JS, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Rose HJ, Saxon DB, Schroedter M, Sembroski GH, Senturk GD, Slane P, Smith AW, Tešić G, Theiling M, Thibadeau S, Tsurusaki K, Varlotta A, Vassiliev VV, Vincent S, Vivier M, Wakely SP, Ward JE, Weekes TC, Weinstein A, Weisgarber T, Williams DA, Wood M, Zitzer B (2011) Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys J 730:L20. doi: 10.1088/2041-8205/730/2/L20. arXiv:1102.3871 ADSGoogle Scholar
  9. Acharya BS et al. (2013) Introducing the CTA concept. Astropart Phys 43(0):3–18. doi: 10.1016/j.astropartphys.2013.01.007. http://www.sciencedirect.com/science/article/pii/S0927650513000169 ADSGoogle Scholar
  10. Achterberg A (1983) Modification of scattering waves and its importance for shock acceleration. Astron Astrophys 119:274 ADSzbMATHGoogle Scholar
  11. Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Belfiore A, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bottacini E, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Angelis AD, Palma FD, Dermer CD, Silva EDCE, Drell PS, Dumora D, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Fukazawa Y, Fusco P, Gargano F, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Guillemot L, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Jóhannesson G, Johnson AS, Kamae T, Katagiri H, Kataoka J, Kerr M, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Martin P, Mazziotta MN, Mcenery JE, Mehault J, Michelson PF, Mitthumsiri W, Mizuno T, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Naumann-Godo M, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Orlando E, Ormes JF, Ozaki M, Paneque D, Parent D, Pesce-Rollins M, Pierbattista M, Piron F, Pohl M, Prokhorov D, Rainò S, Rando R, Razzano M, Reposeur T, Ritz S, Saz Parkinson PM, Sgrò C, Siskind EJ, Smith PD, Spinelli P, Strong AW, Takahashi H, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Tibaldo L, Torres DF, Tosti G, Tramacere A, Troja E, Uchiyama Y, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yang Z, Zimmer S, Bontemps S (2011) A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334:1103. doi: 10.1126/science.1210311 ADSGoogle Scholar
  12. Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Bechtol K, Bellazzini R, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bottacini E, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Busetto G, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Charles E, Chaty S, Chaves RCG, Chekhtman A, Cheung CC, Chiang J, Chiaro G, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Corbel S, Cutini S, D’ammando F, Angelis AD, Palma FD, Dermer CD, Silva EDCE, Drell PS, Drlica-Wagner A, Falletti L, Favuzzi C, Ferrara EC, Franckowiak A, Fukazawa Y, Funk S, Fusco P, Gargano F, Germani S, Giglietto N, Giommi P, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Hewitt JW, Hill AB, Hughes RE, Jackson MS, Jogler T, Jóhannesson G, Johnson AS, Kamae T, Kataoka J, Katsuta J, Knödlseder J, Kuss M, Lande J, Larsson S, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lovellette MN, Lubrano P, Madejski GM, Massaro F, Mayer M, Mazziotta MN, Mcenery JE, Mehault J, Michelson PF, Mignani RP, Mitthumsiri W, Mizuno T, Moiseev AA, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nemmen R, Nuss E, Ohno M, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Perkins JS, Pesce-Rollins M, Piron F, Pivato G, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Ritz S, Romoli C, Sánchez-Conde M, Schulz A, Sgrò C, Simeon PE, Siskind EJ, Smith DA, Spandre G, Spinelli P, Stecker FW, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Thorsett SE, Tibaldo L, Tibolla O, Tinivella M, Troja E, Uchiyama Y, Usher TL, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Werner M, Winer BL, Wood KS, Wood M, Yamazaki R, Yang Z, Zimmer S (2013) Detection of the characteristic pion-decay signature in supernova remnants. Science 339:807. doi: 10.1126/science.1231160 ADSGoogle Scholar
  13. Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Bottai S, Bruno A, Cafagna F, Campana D, Carlson P, Casolino M, Castellini G, Pascale MPD, Rosa GD, Fedele D, Galper AM, Grishantseva L, Hofverberg P, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malvezzi V, Marcelli L, Menn W, Mikhailov VV, Minori M, Mocchiutti E, Nagni M, Orsi S, Osteria G, Papini P, Pearce M, Picozza P, Ricci M, Ricciarini SB, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Taddei E, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2008) A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. doi: 10.1103/PhysRevLett.102.051101. arXiv:0810.4994v2
  14. Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Bottai S, Bruno A, Cafagna F, Campana D, Carlson P, Casolino M, Castellini G, de Pascale MP, de Rosa G, de Simone N, di Felice V, Galper AM, Grishantseva L, Hofverberg P, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malvezzi V, Marcelli L, Menn W, Mikhailov VV, Mocchiutti E, Orsi S, Osteria G, Papini P, Pearce M, Picozza P, Ricci M, Ricciarini SB, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607. doi: 10.1038/nature07942 ADSGoogle Scholar
  15. Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Borisov S, Bottai S, Bruno A, Cafagna F, Campana D, Carbone R, Carlson P, Casolino M, Castellini G, Consiglio L, Pascale MPD, Santis CD, Simone ND, Felice VD, Galper AM, Gillard W, Grishantseva L, Jerse G, Karelin AV, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malakhov V, Malvezzi V, Marcelli L, Mayorov AG, Menn W, Mikhailov VV, Mocchiutti E, Monaco A, Mori N, Nikonov N, Osteria G, Palma F, Papini P, Pearce M, Picozza P, Pizzolotto C, Ricci M, Ricciarini SB, Rossetto L, Sarkar R, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2011) Pamela measurements of cosmic-ray proton and helium spectra. Science 332:69–72 ADSGoogle Scholar
  16. Aguilar M, Alberti G, Alpat B, Alvino A, Ambrosi G, Andeen K, Anderhub H, Arruda L, Azzarello P, Bachlechner A, Barao F, Baret B, Barrau A, Barrin L, Bartoloni A, Basara L, Basili A, Batalha L, Bates J, Battiston R, Bazo J, Becker R, Becker U, Behlmann M, Beischer B, Berdugo J, Berges P, Bertucci B, Bigongiari G, Biland A, Bindi V, Bizzaglia S, Boella G, de Boer W, Bollweg K, Bolmont J, Borgia B, Borsini S, Boschini MJ, Boudoul G, Bourquin M, Brun P, Buénerd M, Burger J, Burger W, Cadoux F, Cai XD, Capell M, Casadei D, Casaus J, Cascioli V, Castellini G, Cernuda I, Cervelli F, Chae MJ, Chang YH, Chen AI, Chen CR, Chen H, Cheng GM, Chen HS, Cheng L, Chernoplyiokov N, Chikanian A, Choumilov E, Choutko V, Chung CH, Clark C, Clavero R, Coignet G, Commichau V, Consolandi C, Contin A, Corti C, Dios MTC, Coste B, Crespo D, Cui Z, Dai M, Delgado C, Torre SD, Demirkoz B, Dennett P, Derome L, Falco SD, Diao XH, Diago A, Djambazov L, Díaz C, von Doetinchem P, Du WJ, Dubois JM, Duperay R, Duranti M, D’Urso D, Egorov A, Eline A, Eppling FJ, Eronen T, van Es J, Esser H, Falvard A, Fiandrini E, Fiasson A, Finch E, Fisher P, Flood K, Foglio R, Fohey M, Fopp S, Fouque N, Galaktionov Y, Gallilee M, Gallin-Martel L, Gallucci G, García B, García J, García-López R, García-Tabares L, Gargiulo C, Gast H, Gebauer I, Gentile S, Gervasi M, Gillard W, Giovacchini F, Girard L, Goglov P, Gong J, Goy-Henningsen C, Grandi D, Graziani M, Grechko A, Gross A, Guerri I, de la Guía C, Guo KH, Habiby M, Haino S, Hauler F, He ZH, Heil M, Heilig J, Hermel R, Hofer H, Huang ZC, Hungerford W, Incagli M, Ionica M, Jacholkowska A, Jang WY, Jinchi H, Jongmanns M, Journet L, Jungermann L, Karpinski W, Kim GN, Kim KS, Kirn T, Kossakowski R, Koulemzine A, Kounina O, Kounine A, Koutsenko V, Krafczyk MS, Laudi E, Laurenti G, Lauritzen C, Lebedev A, Lee MW, Lee SC, Leluc C, Vargas HL, Lepareur V, Li JQ, Li Q, Li TX, Li W, Li ZH, Lipari P, Lin CH, Liu D, Liu H, Lomtadze T, Lu YS, Lucidi S, Lübelsmeyer K, Luo JZ, Lustermann W, Lv S, Madsen J, Majka R, Malinin A, Mañá C, Marín J, Martin T, Martínez G, Masciocchi F, Masi N, Maurin D, McInturff A, McIntyre P, Menchaca-Rocha A, Meng Q, Menichelli M, Mereu I, Millinger M, Mo DC, Molina M, Mott P, Mujunen A, Natale S, Nemeth P, Ni JQ, Nikonov N, Nozzoli F, Nunes P, Obermeier A, Oh S, Oliva A, Palmonari F, Palomares C, Paniccia M, Papi A, Park WH, Pauluzzi M, Pauss F, Pauw A, Pedreschi E, Pensotti S, Pereira R, Perrin E, Pessina G, Pierschel G, Pilo F, Piluso A, Pizzolotto C, Plyaskin V, Pochon J, Pohl M, Poireau V, Porter S, Pouxe J, Putze A, Quadrani L, Qi XN, Rancoita PG, Rapin D, Ren ZL, Ricol JS, Riihonen E, Rodríguez I, Roeser U, Rosier-Lees S, Rossi L, Rozhkov A, Rozza D, Sabellek A, Sagdeev R, Sandweiss J, Santos B, Saouter P, Sarchioni M, Schael S, Schinzel D, Schmanau M, Schwering G, von Dratzig AS, Scolieri G, Seo ES, Shan BS, Shi JY, Shi YM, Siedenburg T, Siedling R, Son D, Spada F, Spinella F, Steuer M, Stiff K, Sun W, Sun WH, Sun XH, Tacconi M, Tang CP, Tang XW, Tang ZC, Tao L, Tassan-Viol J, Ting SCC, Ting SM, Titus C, Tomassetti N, Toral F, Torsti J, Tsai JR, Tutt JC, Ulbricht J, Urban T, Vagelli V, Valente E, Vannini C, Valtonen E, Trevino MV, Vaurynovich S, Vecchi M, Vergain M, Verlaat B, Vescovi C, Vialle JP, Viertel G, Volpini G, Wang D, Wang NH, Wang QL, Wang RS, Wang X, Wang ZX, Wallraff W, Weng ZL, Willenbrock M, Wlochal M, Wu H, Wu KY, Wu ZS, Xiao WJ, Xie S, Xiong RQ, Xin GM, Xu NS, Xu W, Yan Q, Yang J, Yang M, Ye QH, Yi H, Yu YJ, Yu ZQ, Zeissler S, Zhang JG, Zhang Z, Zhang MM, Zheng ZM, Zhuang HL, Zhukov V, Zichichi A, Zuccon P, Zurbach C (2013). First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys Rev Lett 110:141102. doi: 10.1103/PhysRevLett.110.141102 ADSGoogle Scholar
  17. Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Breitling F, Brown AM, Chadwick PM, Chounet LM, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, O’C Drury L, Dubus G, Emmanoulopoulos D, Espigat P, Feinstein F, Fontaine G, Fuchs Y, Funk S, Gallant YA, Giebels B, Glicenstein JF, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, Jacholkowska A, de Jager OC, Khélifi B, Klages S, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Reimer O, Ripken J, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Spangler D, Steenkamp R, Stegmann C, Superina G, Tavernet JP, Terrier R, Théoret CG, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vincent P, Völk HJ, Wagner SJ (2006) A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron Astrophys 449:223–242. doi: 10.1051/0004-6361:20054279. arXiv:astro-ph/0511678 ADSGoogle Scholar
  18. Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brion E, Brown AM, Bühler R, Büsching I, Carrigan S, Chadwick PM, Chounet LM, Coignet G, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, O’C Drury L, Dubus G, Egberts K, Emmanoulopoulos D, Espigat P, Feinstein F, Ferrero E, Fiasson A, Fontaine G, Funk S, Funk S, Füßling M, Gallant YA, Giebels B, Glicenstein JF, Glück B, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jager OC, Kendziorra E, Kerschhaggl M, Khélifi B, Komin N, Konopelko A, Kosack K, Lamanna G, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin G, McComb TJL, Moulin, E, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Olive JP, Orford KJ, Osborne JL, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Reimer O, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Sahakian V, Santangelo A, Saugé L, Schlenker S, Schlickeiser R, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Spanier F, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Völk HJ, Wagner SJ (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron Astrophys 464:235–243. doi: 10.1051/0004-6361:20066381. arXiv:astro-ph/0611813 ADSGoogle Scholar
  19. Aharonian FA (2013) Gamma rays from supernova remnants. Astropart Phys 43:71–80. doi: 10.1016/j.astropartphys.2012.08.007 ADSGoogle Scholar
  20. Aharonian FA, Akhperjanian AG, Aye KM, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Berghaus P, Bernlöhr K, Bolz O, Boisson C, Borgmeier C, Breitling F, Brown AM, Bussons Gordo J, Chadwick PM, Chitnis VR, Chounet LM, Cornils R, Costamante L, Degrange B, Djannati-Ataï A, Drury LO, Ergin T, Espigat P, Feinstein F, Fleury P, Fontaine G, Funk S, Gallant YA, Giebels B, Gillessen S, Goret P, Guy J, Hadjichristidis C, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, de Jager OC, Jung I, Khélifi B, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemoine M, Lemière A, Leroy N, Lohse T, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pohl M, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Raux J, Rayner SM, Redondo I, Reimer A, Reimer O, Ripken J, Rivoal M, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Steenkamp R, Stegmann C, Tavernet JP, Théoret CG, Tluczykont M, van der Walt DJ, Vasileiadis G, Vincent P, Visser B, Völk HJ, Wagner SJ (2004) High-energy particle acceleration in the shell of a supernova remnant. Nature 432:75–77. doi: 10.1038/nature02960. arXiv:astro-ph/0411533 ADSGoogle Scholar
  21. Ahn HS, Allison P, Bagliesi MG, Beatty JJ, Bigongiari G, Childers JT, Conklin NB, Coutu S, Duvernois MA, Ganel O, Han JH, Jeon JA, Kim KC, Lee MH, Lutz L, Maestro P, Malinin A, Marrocchesi PS, Minnick S, Mognet SI, Nam J, Nam S, Nutter SL, Park IH, Park NH, Seo ES, Sina R, Wu J, Yang J, Yoon YS, Zei R, Zinn SY (2010) Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys J Lett 714:L89. doi: 10.1088/2041-8205/714/1/L89 ADSGoogle Scholar
  22. Aloisio R, Blasi P (2013) Propagation of galactic cosmic rays in the presence of self-generated turbulence. J Cosmol Astropart Phys 7:001. doi: 10.1088/1475-7516/2013/07/001. arXiv:1306.2018 ADSGoogle Scholar
  23. Aloisio R, Berezinsky V, Gazizov A (2012) Transition from galactic to extragalactic cosmic rays. Astropart Phys 39:129–143. doi: 10.1016/j.astropartphys.2012.09.007. arXiv:1211.0494 ADSGoogle Scholar
  24. Amato E, Blasi P (2005) A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc Lett 364:L76. doi: 10.1111/j.1745-3933.2005.00110.x ADSGoogle Scholar
  25. Amato E, Blasi P (2006) Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon Not R Astron Soc 371(3):1251–1258. doi: 10.1111/j.1365-2966.2006.10739.x ADSGoogle Scholar
  26. Amato E, Blasi P (2009) A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon Not R Astron Soc 392(4):1591–1600. doi: 10.1111/j.1365-2966.2008.14200.x ADSGoogle Scholar
  27. Apel WD, Arteaga-Velàzquez JC, Bekk K, Bertaina M, Blümer J, Bozdog H, Brancus IM, Cantoni E, Chiavassa A, Cossavella F, Daumiller K, de Souza V, Pierro FD, Doll P, Engel R, Engler J, Finger M, Fuchs B, Fuhrmann D, Gils HJ, Glasstetter R, Grupen C, Haungs A, Heck D, Hörandel JR, Huber D, Huege T, Kampert KH, Kang D, Klages HO, Link K, Łuczak P, Ludwig M, Mathes HJ, Mayer HJ, Melissas M, Milke J, Mitrica B, Morello C, Oehlschläger J, Ostapchenko S, Palmieri N, Petcu M, Pierog T, Rebel H, Roth M, Schieler H, Schoo S, Schröder FG, Sima O, Toma G, Trinchero GC, Ulrich H, Weindl A, Wochele J, Wommer M, Zabierowski J (2013) Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-GRANDE. Phys Rev D 87:081101(R) ADSGoogle Scholar
  28. Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: International cosmic ray conference, vol 11, pp 132–137 Google Scholar
  29. Axford WI, Leer E, McKenzie JF (1982) The structure of cosmic ray shocks. Astron Astrophys 111:317–325 ADSzbMATHGoogle Scholar
  30. Baade W, Zwicky F (1934) Remarks on super-novae and cosmic rays. Phys Rev 46:76. doi: 10.1103/PhysRev.46.76.2 ADSGoogle Scholar
  31. Ballet J (2006) X-ray synchrotron emission from supernova remnants. Adv Space Res 37:1902–1908. doi: 10.1016/j.asr.2005.03.047. arXiv:astro-ph/0503309 ADSGoogle Scholar
  32. Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. Mon Not R Astron Soc 182:147 ADSGoogle Scholar
  33. Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. Mon Not R Astron Soc 182:443 ADSGoogle Scholar
  34. Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon Not R Astron Soc 353:550. doi: 10.1111/j.1365-2966.2004.08097.x ADSGoogle Scholar
  35. Bell AR (2005) The interaction of cosmic rays and magnetized plasma. Mon Not R Astron Soc 358:181–187. doi: 10.1111/j.1365-2966.2005.08774.x ADSGoogle Scholar
  36. Bell AR, Lucek SG (2001) Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon Not R Astron Soc 321:433–438. doi: 10.1046/j.1365-8711.2001.04063.x ADSGoogle Scholar
  37. Bell AR, Schure KM, Reville B, Giacinti G (2013) Cosmic-ray acceleration and escape from supernova remnants. Mon Not R Astron Soc 431:415–429. doi: 10.1093/mnras/stt179. arXiv:1301.7264 ADSGoogle Scholar
  38. Berezhko EG, Ellison DC (1999) A simple model of nonlinear diffusive shock acceleration. Astrophys J 526:385–399. doi: 10.1086/307993 ADSGoogle Scholar
  39. Berezhko EG, Völk HJ (1997) Kinetic theory of cosmic rays and gamma rays in supernova remnants. I. Uniform interstellar medium. Astropart Phys 7:183–202. doi: 10.1016/S0927-6505(97)00016-9 ADSGoogle Scholar
  40. Berezhko EG, Völk HJ (2000) Kinetic theory of cosmic ray and gamma-ray production in supernova remnants expanding into wind bubbles. Astron Astrophys 357:283–300. arXiv:astro-ph/0002411 ADSGoogle Scholar
  41. Berezhko EG, Völk HJ (2007) Spectrum of cosmic rays produced in supernova remnants. Astrophys J 661:L175. doi: 10.1086/518737 ADSGoogle Scholar
  42. Berezhko EG, Yelshin VK, Ksenofontov LT (1994) Numerical investigation of cosmic ray acceleration in supernova remnants. Astropart Phys 2:215–227. doi: 10.1016/0927-6505(94)90043-4 ADSGoogle Scholar
  43. Berezhko EG, Ksenofontov LT, Völk HJ (2013) The nature of gamma-ray emission of Tycho’s supernova remnant. Astrophys J 763:14. doi: 10.1088/0004-637X/763/1/14. arXiv:1211.5398 ADSGoogle Scholar
  44. Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154:1. doi: 10.1016/0370-1573(87)90134-7 ADSGoogle Scholar
  45. Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J 221:L29–L32. doi: 10.1086/182658 ADSGoogle Scholar
  46. Blasi P (2002) A semi-analytical approach to non-linear shock acceleration. Astropart Phys 16:429. doi: 10.1016/S0927-6505(01)00127-X ADSGoogle Scholar
  47. Blasi P (2004) Nonlinear shock acceleration in the presence of seed particles. Astropart Phys 21:45. doi: 10.1016/j.astropartphys.2003.10.008 ADSGoogle Scholar
  48. Blasi P, Amato E (2012a) Diffusive propagation of cosmic rays from supernova remnants in the galaxy. I. Spectrum and chemical composition. J Cosmol Astropart Phys 01:010. doi: 10.1088/1475-7516/2012/01/010 ADSGoogle Scholar
  49. Blasi P, Amato E (2012b) Diffusive propagation of cosmic rays from supernova remnants in the galaxy. II: Anisotropy. J Cosmol Astropart Phys 01:011. doi: 10.1088/1475-7516/2012/01/011 ADSGoogle Scholar
  50. Blasi P, Gabici S, Vannoni G (2005) On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc 361:907. doi: 10.1111/j.1365-2966.2005.09227.x ADSGoogle Scholar
  51. Blasi P, Amato E, Caprioli D (2007) The maximum momentum of particles accelerated at cosmic ray modified shocks. Mon Not R Astron Soc 375(4):1471–1478. doi: 10.1111/j.1365-2966.2006.11412.x ADSGoogle Scholar
  52. Blasi P, Amato E, Serpico PD (2012a) Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys Rev Lett 109:61101. doi: 10.1103/PhysRevLett.109.061101 ADSGoogle Scholar
  53. Blasi P, Morlino G, Bandiera R, Amato E, Caprioli D (2012) Collisionless shocks in a partially ionized medium. I. Neutral return flux and its effects on acceleration of test particles. Astrophys J 755:121. doi: 10.1088/0004-637X/755/2/121. arXiv:1202.3080 ADSGoogle Scholar
  54. Brandt TJ, Acero F, de Palma F, Hewitt JW, Renaud M (Fermi LAT Collaboration) (2013a) The 1st Fermi LAT SNR catalog: constraining the cosmic ray contribution. arXiv:1307.6571
  55. Brandt TJ, Ballet J, de Palma F, Johannesson G, Tibaldo L (Fermi LAT Collaboration) (2013b) The 1st Fermi LAT SNR catalog: the impact of interstellar emission modeling. arXiv:1307.6572
  56. Bykov AM, Toptygin IN (2001) A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron Lett 27:625–633. doi: 10.1134/1.1404456 ADSGoogle Scholar
  57. Bykov AM, Osipov SM, Toptygin IN (2009) Long-wavelength MHD instability in the prefront of collisionless shocks with accelerated particles. Astron Lett 35:555. doi: 10.1134/S1063773709080052 ADSGoogle Scholar
  58. Bykov AM, Ellison DC, Renaud M (2011a) Magnetic fields in cosmic particle acceleration sources. doi: 10.1007/s11214-011-9761-4. arXiv:1105.0130v1
  59. Bykov AM, Osipov SM, Ellison DC (2011b) Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon Not R Astron Soc 410:39–52. doi: 10.1111/j.1365-2966.2010.17421.x. arXiv:1010.0408 ADSGoogle Scholar
  60. Bykov AM, Brandenburg A, Malkov MA, Osipov SM (2013) Microphysics of cosmic ray driven plasma instabilities. Space Sci Rev. doi: 10.1007/s11214-013-9988-3 zbMATHGoogle Scholar
  61. Caprioli D (2011) Understanding hadronic gamma-ray emission from supernova remnants. J Cosmol Astropart Phys 05:026. doi: 10.1088/1475-7516/2011/05/026 ADSGoogle Scholar
  62. Caprioli D (2012) Cosmic-ray acceleration in supernova remnants: non-linear theory revised. J Cosmol Astropart Phys 07:038. doi: 10.1088/1475-7516/2012/07/038 ADSGoogle Scholar
  63. Caprioli D, Spitkovsky A (2013) Cosmic-ray-induced filamentation instability in collisionless shocks. Astrophys J 765:L20. doi: 10.1088/2041-8205/765/1/L20. arXiv:1211.6765 ADSGoogle Scholar
  64. Caprioli D, Blasi P, Amato E, Vietri M (2008) Dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks. Astrophys J 679:L139. doi: 10.1086/589505 ADSGoogle Scholar
  65. Caprioli D, Blasi P, Amato E (2009a) On the escape of particles from cosmic ray modified shocks. Mon Not R Astron Soc 396(4):2065–2073. doi: 10.1111/j.1365-2966.2008.14298.x ADSGoogle Scholar
  66. Caprioli D, Blasi P, Amato E, Vietri M (2009b) Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. Mon Not R Astron Soc 395(2):895–906. doi: 10.1111/j.1365-2966.2009.14570.x ADSGoogle Scholar
  67. Caprioli D, Amato E, Blasi P (2010a) The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart Phys 33(3):160–168. doi: 10.1016/j.astropartphys.2010.01.002 ADSGoogle Scholar
  68. Caprioli D, Kang H, Vladimirov AE, Jones TW (2010b) Comparison of different methods for non-linear diffusive shock acceleration. Mon Not R Astron Soc 407:1773–1783. doi: 10.1111/j.1365-2966.2010.17013.x. arXiv:1005.2127 ADSGoogle Scholar
  69. Cassam-Chenaï G, Hughes JP, Ballet J, Decourchelle A (2007) The blast wave of Tycho’s supernova remnant. Astrophys J 665:315–340. doi: 10.1086/518782. arXiv:astro-ph/0703239 ADSGoogle Scholar
  70. Chevalier RA, Raymond JC (1978) Optical emission from a fast shock wave. The remnants of Tycho’s supernova and SN 1006. Astrophys J 225:L27–L30. doi: 10.1086/182785 ADSGoogle Scholar
  71. Chevalier RA, Kirshner RP, Raymond JC (1980) The optical emission from a fast shock wave with application to supernova remnants. Astrophys J 235:186–195. doi: 10.1086/157623 ADSGoogle Scholar
  72. DeMarco D, Blasi P, Stanev T (2007) Numerical propagation of high energy cosmic rays in the galaxy: I. Technical issues. J Cosmol Astropart Phys 06:027. doi: 10.1088/1475-7516/2007/06/027 ADSGoogle Scholar
  73. Drury L (1983) On particle acceleration in supernova remnants. Space Sci Rev 36:57–60. doi: 10.1007/BF00171901 ADSGoogle Scholar
  74. Drury LO (2011) Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon Not R Astron Soc 415:1807–1814. doi: 10.1111/j.1365-2966.2011.18824.x. arXiv:1009.4799 ADSGoogle Scholar
  75. Drury LO, Voelk JH (1981) Hydromagnetic shock structure in the presence of cosmic rays. Astrophys J 248:344–351. doi: 10.1086/159159 ADSGoogle Scholar
  76. Effenberger F, Fichtner H, Scherer K, Büsching I (2012) Anisotropic diffusion of galactic cosmic ray protons and their steady-state azimuthal distribution. Astron Astrophys 547:120. doi: 10.1051/0004-6361/201220203 ADSGoogle Scholar
  77. Ellison DC, Eichler D (1984) Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering. Astrophys J 286:691–701. doi: 10.1086/162644 ADSGoogle Scholar
  78. Ellison DC, Drury LO, Meyer JP (1997) Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys J 487:197. doi: 10.1086/304580 ADSGoogle Scholar
  79. Ellison DC, Patnaude DJ, Slane P, Blasi P, Gabici S (2007) Particle acceleration in supernova remnants and the production of thermal and nonthermal radiation. Astrophys J 661:879–891. doi: 10.1086/517518. arXiv:astro-ph/0702674 ADSGoogle Scholar
  80. Ellison DC, Patnaude DJ, Slane P, Raymond J (2010) Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal x-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys J 712:287–293. doi: 10.1088/0004-637X/712/1/287. arXiv:1001.1932 ADSGoogle Scholar
  81. Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi: 10.1103/PhysRev.75.1169 ADSzbMATHGoogle Scholar
  82. Fermi E (1954) Galactic magnetic fields and the origin of cosmic radiation. Astrophys J 119:1. doi: 10.1086/145789 ADSGoogle Scholar
  83. Fukui Y, Sano H, Sato J, Torii K, Horachi H, Hayakawa T, McClure-Griffiths NM, Rowell G, Inoue T, Inutsuka S, Kawamura A, Yamamoto H, Okuda T, Mizuno N, Onishi T, Mizuno A, Ogawa H (2012) A detailed study of the molecular and atomic gas toward the γ-ray supernova remnant RX J1713.7-3946: spatial TeV γ-ray and interstellar medium gas correspondence. Astrophys J 746:82. doi: 10.1088/0004-637X/746/1/82. arXiv:1107.0508 ADSGoogle Scholar
  84. Gabici S, Aharonian FA, Blasi P (2007) Gamma rays from molecular clouds. Astrophys J Suppl Ser 309:365–371. doi: 10.1007/s10509-007-9427-6. arXiv:astro-ph/0610032 Google Scholar
  85. Gabici S, Aharonian FA, Casanova S (2009) Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon Not R Astron Soc 396:1629–1639. doi: 10.1111/j.1365-2966.2009.14832.x. arXiv:0901.4549 ADSGoogle Scholar
  86. Gaisser TK, Stanev T, Tilav S (2013) Cosmic ray energy spectrum from measurements of air showers. arXiv:1303.3565v1
  87. Gargaté L, Spitkovsky A (2012) Ion acceleration in non-relativistic astrophysical shocks. Astrophys J 744:67. doi: 10.1088/0004-637X/744/1/67. arXiv:1107.0762 ADSGoogle Scholar
  88. Ghavamian P, Raymond J, Hartigan P, Blair WP (2000) Evidence for shock precursors in Tycho’s supernova remnant. Astrophys J 535:266–274. doi: 10.1086/308811 ADSGoogle Scholar
  89. Ghavamian P, Laming JM, Rakowski CE (2007) A physical relationship between electron–proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys J 654:L69–L72. doi: 10.1086/510740. arXiv:astro-ph/0611306 ADSGoogle Scholar
  90. Ghavamian P, Schwartz SJ, Mitchell J, Masters A, Laming JM (2013) Electron-ion temperature equilibration in collisionless shocks: the supernova remnant-solar wind connection. Space Sci Rev. doi: 10.1007/s11214-013-9999-0. arXiv:1305.6617 Google Scholar
  91. Giacalone J (2005) Particle acceleration at shocks moving through an irregular magnetic field. Astrophys J 624:765–772. doi: 10.1086/429265 ADSGoogle Scholar
  92. Giacalone J (2013) Cosmic-ray transport and interaction with shocks. Space Sci Rev 176:73–88. doi: 10.1007/s11214-011-9763-2 ADSGoogle Scholar
  93. Giacalone J, Jokipii JR (2007) Magnetic field amplification by shocks in turbulent fluids. Astrophys J 663:L41. doi: 10.1086/519994 ADSGoogle Scholar
  94. Giacinti G, KachelrießM, Semikoz DV (2013) Anisotropic cosmic ray diffusion and its implications for gamma-ray astronomy. Phys Rev D 88(2):023010. doi: 10.1103/PhysRevD.88.023010. arXiv:1306.3209 ADSGoogle Scholar
  95. Gieseler UDJ, Jones TW, Kang H (2000) Time dependent cosmic-ray shock acceleration with self-consistent injection. Astron Astrophys 364:911–922. arXiv:astro-ph/0011058 ADSGoogle Scholar
  96. Ginzburg VL, Syrovatsky SI (1961) Origin of cosmic rays. Prog Theor Phys Suppl 20:1. doi: 10.1143/PTPS.20.1 ADSGoogle Scholar
  97. Giordano F, Naumann-Godo M, Ballet J, Bechtol K, Funk S, Lande J, Mazziotta MN, Rainò S, Tanaka T, Tibolla O, Uchiyama Y (2012) Fermi large area telescope detection of the young supernova remnant Tycho. Astrophys J 744:L2. doi: 10.1088/2041-8205/744/1/L2. arXiv:1108.0265 ADSGoogle Scholar
  98. Giuliani A, Tavani M, Bulgarelli A, Striani E, Sabatini S, Cardillo M, Fukui Y, Kawamura A, Ohama A, Furukawa N, Torii K, Sano H, Aharonian FA, Verrecchia F, Argan A, Barbiellini G, Caraveo PA, Cattaneo PW, Chen AW, Cocco V, Costa E, D’Ammando F, Del Monte E, Paris G, Di Cocco G, Donnarumma I, Evangelista Y, Feroci M, Fiorini M, Froysland T, Fuschino F, Galli M, Gianotti F, Labanti C, Lapshov Y, Lazzarotto F, Lipari P, Longo F, Marisaldi M, Mereghetti S, Morselli A, Moretti E, Pacciani L, Pellizzoni A, Perotti F, Picozza P, Pilia M, Prest M, Pucella G, Rapisarda M, Rappoldi A, Soffitta P, Trifoglio M, Trois A, Vallazza E, Vercellone S, Vittorini V, Zambra A, Zanello D, Pittori C, Santolamazza P, Giommi P, Colafrancesco S (2010) AGILE detection of GeV γ-ray emission from the SNR W28. Astron Astrophys 516:L11. doi: 10.1051/0004-6361/201014256. arXiv:1005.0784 ADSGoogle Scholar
  99. Giuliani A, Cardillo M, Tavani M, Fukui Y, Yoshiike S, Torii K, Dubner G, Castelletti G, Barbiellini G, Bulgarelli A, Caraveo P, Costa E, Cattaneo PW, Chen A, Contessi T, Del Monte E, Donnarumma I, Evangelista Y, Feroci M, Gianotti F, Lazzarotto F, Lucarelli F, Longo F, Marisaldi M, Mereghetti S, Pacciani L, Pellizzoni A, Piano G, Picozza P, Pittori C, Pucella G, Rapisarda M, Rappoldi A, Sabatini S, Soffitta P, Striani E, Trifoglio M, Trois A, Vercellone S, Verrecchia F, Vittorini V, Colafrancesco S, Giommi P, Bignami G (2011) Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys J 742:L30. doi: 10.1088/2041-8205/742/2/L30. arXiv:1111.4868 ADSGoogle Scholar
  100. Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys J 438:763. doi: 10.1086/175121 ADSGoogle Scholar
  101. Helder EA, Vink J, Bassa CG, Bamba A, Bleeker JAM, Funk S, Ghavamian P, Heyden KJVD, Verbunt F, Yamazaki R (2009) Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325:719. doi: 10.1126/science.1173383 ADSGoogle Scholar
  102. Helder EA, Kosenko D, Vink J (2010) Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys J Lett 719:L140. doi: 10.1088/2041-8205/719/2/L140 ADSGoogle Scholar
  103. Helder EA, Kosenko D, Vink J (2011) Erratum: “Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5”. Astrophys J Lett 737:L46. doi: 10.1088/2041-8205/737/2/L46 ADSGoogle Scholar
  104. Helder EA, Vink J, Bamba A, Bleeker JAM, Burrows DN, Ghavamian P, Yamazaki R (2013) Proper motions of H-alpha filaments in the supernova remnant RCW 86. arXiv:1306.3994
  105. Heng K (2010) Balmer-dominated shocks: a concise review. Publ Astron Soc Aust 27:23–44. doi: 10.1071/AS09057. arXiv:0908.4080 ADSGoogle Scholar
  106. Hewitt JW, Yusef-Zadeh F, Wardle M (2009) Correlation of supernova remnant Masers and gamma-ray sources. Astrophys J 706:L270–L274. doi: 10.1088/0004-637X/706/2/L270. arXiv:0909.2827 ADSGoogle Scholar
  107. Higdon JC, Lingenfelter RE (2005) Ob associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys J 628:738. doi: 10.1086/430814 ADSGoogle Scholar
  108. Higdon JC, Lingenfelter RE (2006) The superbubble origin for galactic cosmic rays. Adv Space Res 37:1913. doi: 10.1016/j.asr.2005.07.071 ADSGoogle Scholar
  109. Higdon JC, Lingenfelter RE (2013) The galactic spatial distribution of ob associations and their surrounding supernova-generated superbubble. arXiv:1302.1223v1
  110. Holder J (2012) TeV gamma-ray astronomy: a summary. Astropart Phys 39:61–75. doi: 10.1016/j.astropartphys.2012.02.014. arXiv:1204.1267 ADSGoogle Scholar
  111. Höorandel JR (2006) A review of experimental results at the knee. J Phys Conf Ser 47:41–50. doi: 10.1088/1742-6596/47/1/005. arXiv:astro-ph/0508014 ADSGoogle Scholar
  112. Hörandel JR (2004) Models of the knee in the energy spectrum of cosmic rays. Astropart Phys 21:241. doi: 10.1016/j.astropartphys.2004.01.004 ADSGoogle Scholar
  113. Aartsen MG et al. (ICETOP Collaboration) (2013) Measurement of the cosmic ray energy spectrum with icetop-73. Phys Rev D 88:042004 ADSGoogle Scholar
  114. Jokipii JR (1982) Particle drift, diffusion, and acceleration at shocks. Astrophys J 255:716. doi: 10.1086/159870 ADSGoogle Scholar
  115. Jokipii JR (1987) Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys J 313:842. doi: 10.1086/165022 ADSGoogle Scholar
  116. Jokipii JR, Parker EN (1969a) Cosmic-ray life and the stochastic nature of the galactic magnetic field. Astrophys J 155:799. doi: 10.1086/149910 ADSGoogle Scholar
  117. Jokipii JR, Parker EN (1969b) Stochastic aspects of magnetic lines of force with application to cosmic-ray propagation. Astrophys J 155:777. doi: 10.1086/149909 ADSGoogle Scholar
  118. Juliusson E, Meyer P, Müller D (1972) Composition of cosmic-ray nuclei at high energies. Phys Rev Lett 29:445–448. doi: 10.1103/PhysRevLett.29.445 ADSGoogle Scholar
  119. Knerr JM, Jokipii JR, Ellison DC (1996) A dynamical Monte Carlo simulation of a collisionless shock. Astrophys J 458:641. doi: 10.1086/176846 ADSGoogle Scholar
  120. Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl Akad Nauk SSSR 234:1306–1308 ADSGoogle Scholar
  121. Lagage PO, Cesarsky CJ (1983a) Cosmic-ray shock acceleration in the presence of self-excited waves. Astron Astrophys 118:223 ADSzbMATHGoogle Scholar
  122. Lagage PO, Cesarsky CJ (1983b) The maximum energy of cosmic rays accelerated by supernova shocks. Astron Astrophys 125:249 ADSzbMATHGoogle Scholar
  123. Lucek SG, Bell AR (2000) Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon Not R Astron Soc 314:65–74. doi: 10.1046/j.1365-8711.2000.03363.x ADSGoogle Scholar
  124. Maestro P, Ahn HS, Allison P, Bagliesi MG, Barbier L, Beatty JJ, Bigongiari G, Brandt TJ, Childers JT, Conklin NB, Coutu S, DuVernois MA, Ganel O, Han JH, Jeon JA, Kim KC, Lee MH, Malinine A, Marrocchesi PS, Minnick S, Mognet SI, Nam SW, Nutter S, Park IH, Park NH, Seo ES, Sina R, Walpole P, Yang J, Yoon YS, Zei R, Zinn SY (2010) Elemental energy spectra of cosmic rays measured by cream-II. arXiv:1003.5759v1
  125. Malkov M, Drury L (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429 ADSGoogle Scholar
  126. Malkov MA (1997) Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys J 485:638. doi: 10.1086/304471. arXiv:astro-ph/9707152 ADSGoogle Scholar
  127. Malkov MA (1998) Ion leakage from quasiparallel collisionless shocks: implications for injection and shock dissipation. Phys Rev E 58:4911–4928. doi: 10.1103/PhysRevE.58.4911. arXiv:astro-ph/9806340 ADSGoogle Scholar
  128. Malkov MA (1999) Asymptotic particle spectra and plasma flows at strong shocks. Astrophys J 511:L53–L56. doi: 10.1086/311825. arXiv:astro-ph/9807097 ADSGoogle Scholar
  129. Malkov MA, Diamond PH, Sagdeev RZ, Aharonian FA, Moskalenko IV (2013) Analytic solution for self-regulated collective escape of cosmic rays from their acceleration sites. Astrophys J 768:73. doi: 10.1088/0004-637X/768/1/73. arXiv:1207.4728 ADSGoogle Scholar
  130. Matthaeus WH, Qin G, Bieber JW, Zank GP (2003) Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys J 590:L53–L56. doi: 10.1086/376613 ADSGoogle Scholar
  131. Maurin D, Melot F, Taillet R (2013) A database of charged cosmic rays. arXiv:1302.5525
  132. McKee CF, Truelove JK (1995) Explosions in the interstellar medium. Phys Rep 256:157–172. doi: 10.1016/0370-1573(94)00106-D ADSGoogle Scholar
  133. Meyer JP, Drury LO, Ellison DC (1997) Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys J 487:182. doi: 10.1086/304599 ADSGoogle Scholar
  134. Morlino G, Caprioli D (2011) Strong evidences of hadron acceleration in Tycho’s supernova remnant. arXiv:1105.6342v2
  135. Morlino G, Caprioli D (2012) Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron Astrophys 538:81. doi: 10.1051/0004-6361/201117855 ADSGoogle Scholar
  136. Morlino G, Amato E, Blasi P (2009) Gamma-ray emission from SNR RX J1713.7–3946 and the origin of galactic cosmic rays. Mon Not R Astron Soc 392(1):240–250. doi: 10.1111/j.1365-2966.2008.14033.x ADSGoogle Scholar
  137. Morlino G, Bandiera R, Blasi P, Amato E (2012) Collisionless shocks in a partially ionized medium. II. Balmer emission. Astrophys J 760:137. doi: 10.1088/0004-637X/760/2/137 ADSGoogle Scholar
  138. Morlino G, Blasi P, Bandiera R, Amato E (2013a) Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks. Astron Astrophys 558:A25, 6 pp ADSGoogle Scholar
  139. Morlino G, Blasi P, Bandiera R, Amato E (2013b) Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5. Astron Astrophys 557:A142, 7 pp ADSGoogle Scholar
  140. Morlino G, Blasi P, Bandiera R, Amato E, Caprioli D (2013c) Collisionless shocks in a partially ionized medium. III. Efficient cosmic ray acceleration. Astrophys J 768:148. doi: 10.1088/0004-637X/768/2/148. arXiv:1211.6148 ADSGoogle Scholar
  141. Nava L, Gabici S (2013) Anisotropic cosmic ray diffusion and gamma-ray production close to supernova remnants, with an application to w28. Mon Not R Astron Soc 429:1643. doi: 10.1093/mnras/sts450 ADSGoogle Scholar
  142. Nikolić S, van de Ven G, Heng K, Kupko D, Husemann B, Raymond JC, Hughes JP, Falcón-Barroso J (2013) An integral view of fast shocks around supernova 1006. doi: 10.1126/science.1228297. arXiv:1302.4328v1
  143. Parizot E, Marcowith A, van der Swaluw E, Bykov AM, Tatischeff V (2004) Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron Astrophys 424:747–760. doi: 10.1051/0004-6361:20041269. arXiv:astro-ph/0405531 ADSGoogle Scholar
  144. Potgieter M (2013) Solar modulation of cosmic rays. Living Rev Sol Phys 10:3. doi: 10.12942/lrsp-2013-3. arXiv:1306.4421 ADSGoogle Scholar
  145. Ptuskin V (2006) Cosmic ray transport in the galaxy. J Phys Conf Ser 47:113. doi: 10.1088/1742-6596/47/1/014 ADSGoogle Scholar
  146. Ptuskin V, Zirakashvili V, Seo ES (2010) Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys J 718:31. doi: 10.1088/0004-637X/718/1/31 ADSGoogle Scholar
  147. Reville B, Bell AR (2012) A filamentation instability for streaming cosmic rays. Mon Not R Astron Soc 419:2433–2440. doi: 10.1111/j.1365-2966.2011.19892.x. arXiv:1109.5690 ADSGoogle Scholar
  148. Reville B, Bell AR (2013) Universal behaviour of shock precursors in the presence of efficient cosmic ray acceleration. Mon Not R Astron Soc 430:2873–2884. doi: 10.1093/mnras/stt100. arXiv:1301.3173 ADSGoogle Scholar
  149. Riquelme MA, Spitkovsky A (2009) Nonlinear study of Bell’s cosmic ray current-driven instability. Astrophys J 694:626–642. doi: 10.1088/0004-637X/694/1/626. arXiv:0810.4565 ADSGoogle Scholar
  150. Rodriguez Marrero AY, de Torres DF, Cea del Pozo E, Reimer O, Cillis AN (2008) Diffusion of cosmic rays and the gamma-ray large area telescope: phenomenology at the 1–100 GeV regime. Astrophys J 689:213–218. arXiv:0808.1834. doi: 10.1086/592562 ADSGoogle Scholar
  151. Rossi B (1964) Cosmic rays. McGraw-Hill paperbacks in physics. McGraw-Hill, New York. http://books.google.it/books?id=K6kRAQAAIAAJ Google Scholar
  152. Sano T, Nishihara K, Matsuoka C, Inoue T (2012) Magnetic field amplification associated with the Richtmyer–Meshkov instability. Astrophys J 758:126. doi: 10.1088/0004-637X/758/2/126. arXiv:1209.0961 ADSGoogle Scholar
  153. Schure KM, Bell AR (2013) Cosmic ray acceleration in young supernova remnants. arXiv:1307.6575v1
  154. Schure KM, Bell AR, Drury LO, Bykov AM (2012) Diffusive shock acceleration and magnetic field amplification. Space Sci Rev 173:491. doi: 10.1007/s11214-012-9871-7 ADSGoogle Scholar
  155. Serpico PD (2012) Astrophysical models for the origin of the positron “excess”. Astropart Phys 39:2–11. doi: 10.1016/j.astropartphys.2011.08.007. arXiv:1108.4827 ADSGoogle Scholar
  156. Shalchi A, Büsching I, Lazarian A, Schlickeiser R (2010) Perpendicular diffusion of cosmic rays for a Goldreich–Sridhar spectrum. Astrophys J 725:2117. doi: 10.1088/0004-637X/725/2/2117 ADSGoogle Scholar
  157. Simpson JA, Garcia-Munoz M (1988) Cosmic-ray lifetime in the galaxy—experimental results and models. Space Sci Rev 46:205. doi: 10.1007/BF00212240 ADSGoogle Scholar
  158. Sironi L, Spitkovsky A (2011) Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys J 726:75. doi: 10.1088/0004-637X/726/2/75. arXiv:1009.0024 ADSGoogle Scholar
  159. Skilling J (1975a) Cosmic ray streaming. I. Effect of Alfven waves on particles. Mon Not R Astron Soc 172:557 ADSGoogle Scholar
  160. Skilling J (1975b) Cosmic ray streaming. II. Effect of particles on Alfven waves. Mon Not R Astron Soc 173:245 ADSGoogle Scholar
  161. Sokolsky P (2013) Results from the telescope array and review of HiRes. In: European physical journal web of conferences, vol 52, p 6002. doi: 10.1051/epjconf/20125206002 Google Scholar
  162. Sokolsky P, Thomson GB (2007) Topical review: Highest energy cosmic-rays and results from the HiRes experiment. J Phys G, Nucl Part Phys 34:401. doi: 10.1088/0954-3899/34/11/R01. arXiv:0706.1248 ADSGoogle Scholar
  163. Sollerman J, Ghavamian P, Lundqvist P, Smith RC (2003) High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron Astrophys 407:249. doi: 10.1051/0004-6361:20030839 ADSGoogle Scholar
  164. Spitkovsky A (2008a) On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys J 673:L39–L42. doi: 10.1086/527374. arXiv:0706.3126 ADSGoogle Scholar
  165. Spitkovsky A (2008b) Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys J 682:L5–L8. doi: 10.1086/590248. arXiv:0802.3216 ADSGoogle Scholar
  166. Spitzer L (1962) Physics of fully ionized gases. Wiley, New York Google Scholar
  167. Tavani M, Giuliani A, Chen AW, Argan A, Barbiellini G, Bulgarelli A, Caraveo P, Cattaneo PW, Cocco V, Contessi T, D’ammando F, Costa E, Paris GD, Monte ED, Cocco GD, Donnarumma I, Evangelista Y, Ferrari A, Feroci M, Fuschino F, Galli M, Gianotti F, Labanti C, Lapshov I, Lazzarotto F, Lipari P, Longo F, Marisaldi M, Mastropietro M, Mereghetti S, Morelli E, Moretti E, Morselli A, Pacciani L, Pellizzoni A, Perotti F, Piano G, Picozza P, Pilia M, Pucella G, Prest M, Rapisarda M, Rappoldi A, Scalise E, Rubini A, Sabatini S, Striani E, Soffitta P, Trifoglio M, Trois A, Vallazza E, Vercellone S, Vittorini V, Zambra A, Zanello D, Pittori C, Verrecchia F, Santolamazza P, Giommi P, Colafrancesco S, Antonelli LA, Salotti L (2010) Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys J Lett 710:L151. doi: 10.1088/2041-8205/710/2/L151 ADSGoogle Scholar
  168. Thoudam S, Hörandel JR (2012) Nearby supernova remnants and the cosmic ray spectral hardening at high energies. Mon Not R Astron Soc 421:1209–1214. doi: 10.1111/j.1365-2966.2011.20385.x. arXiv:1112.3020 ADSGoogle Scholar
  169. Thoudam S, Hörandel JR (2013) Revisiting the hardening of the cosmic-ray energy spectrum at TeV energies. arXiv:1304.1400
  170. Tomassetti N (2012) Origin of the cosmic-ray spectral hardening. Astrophys J Lett 752(1):L13, 5 pp ADSGoogle Scholar
  171. Treumann RA (2009) Fundamentals of collisionless shocks for astrophysical application. 1. Non-relativistic shocks. Astron Astrophys Rev 17:409. doi: 10.1007/s00159-009-0024-2 ADSGoogle Scholar
  172. Uchiyama Y, Takahashi T, Aharonian FA (2002) Flat spectrum X-ray emission from the direction of a molecular cloud associated with SNR RX J1713.7-3946. Publ Astron Soc Jpn 54:L73–L77. arXiv:astro-ph/0208049 ADSGoogle Scholar
  173. van Adelsberg M, Heng K, McCray R, Raymond JC (2008) Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys J 689:1089–1104. doi: 10.1086/592680. arXiv:0803.2521 ADSGoogle Scholar
  174. Vink J (2012) Supernova remnants: the x-ray perspective. Astron Astrophys Rev 20:49. doi: 10.1007/s00159-011-0049-1 ADSGoogle Scholar
  175. Vladimirov AE, Bykov AM, Ellison DC (2008) Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys J 688:1084–1101. doi: 10.1086/592240. arXiv:0807.1321 ADSGoogle Scholar
  176. Völk HJ, Berezhko EG, Ksenofontov LT (2005) Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron Astrophys 433:229. doi: 10.1051/0004-6361:20042015 ADSGoogle Scholar
  177. Warren JS, Hughes JP, Badenes C, Ghavamian P, McKee CF, Moffett D, Plucinsky PP, Rakowski C, Reynoso E, Slane P (2005) Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys J 634:376–389. doi: 10.1086/496941. arXiv:astro-ph/0507478 ADSGoogle Scholar
  178. Zirakashvili VN, Ptuskin VS (2012) Numerical simulations of diffusive shock acceleration in SNRs. Astropart Phys 39:12–21. doi: 10.1016/j.astropartphys.2011.09.003. arXiv:1109.4482 ADSGoogle Scholar
  179. Zirakashvili VN, Ptuskin VS, Völk HJ (2008) Modeling Bell’s nonresonant cosmic-ray instability. Astrophys J 678:255–261. doi: 10.1086/529579. arXiv:0801.4486 ADSGoogle Scholar
  180. Zweibel EG (1979) Energetic particle trapping by Alfven wave instabilities. In: Proceedings of the workshop on particle acceleration mechanisms in astrophysics, vol 56, p 319. doi: 10.1063/1.32090 Google Scholar
  181. Zweibel EG, Everett JE (2010) Environments for magnetic field amplification by cosmic rays. Astrophys J 709:1412. doi: 10.1088/0004-637X/709/2/1412 ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INAF/Osservatorio Astrofisico di ArcetriFirenzeItaly
  2. 2.INFN/Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations